
How should error handling be constructed?

Or, What should exceptions look like?

Mika Raento

Helsinki Institute for Information Technology
Department of Computer Science, University of Helsinki

mraento@cs.helsinki.fi

1 Introduction

There exists a tradition of criticizing the state of error handling and error mes-
sages in programs, dating from the 70’s [1], through 80’s [2,3], 90’s [4] and to the
2000’s [5]. The same, usually HCI-oriented but sometimes technical, literature
also provides guidelines for better error handling from the user’s perspective.
The guidelines include providing advise to the user, uniform reporting strate-
gies, attaching error messages to corresponding input fields, automatic recovery
and graceful degradation.

Why aren’t these guidelines followed by now? From experience in building
medium-sized software with run-of-the-mill developers I claim that the reason
is lack of good design practice and architectural principles when it comes to
error-handling.

There is a wealth of literature in the low-level details of exceptions and their
effects on control-flow, starting with the original proposal by Goodenough [6],
through Cristian’s comprehensive treatment on the theory of exceptions and
fault-tolerance [7] to being included in any current textbook on C++, Java and
.Net. What is missing are practical, implementable guidelines, design patterns
and frameworks for turning the control-flow mechanisms into user-oriented error-
handling techniques. This article provides a conceptual framework for arguing
about error-handling, a concrete pattern based on the concepts, and experience
in implementing it in a medium-size business information system.

The framework proposed here is designed to support a program built from
several independent and re-usable components. This has a large impact on how
easily we can reach the goals stated by the HCI literature: different subsystems
cannot know the user’s intentions and domain, and it mostly precludes the use
of side-channels (like stderr) to communicate error information.

The article is structured as follows: I begin with a synopsis of the philosophy
behind the framework. Before detailed reasoning, some assumptions and border
conditions as to which kind of systems I can claim to be able to reason about
are presented. I then introduce the basis of the reasoning: entities and strate-
gies, deriving from their combination a number of informational requirements
on exceptions. These information requirements and their use in error handling
are discussed in the main part of the text, concluding with a design for a generic
exception class and handling logic, fulfilling these requirements. Some of the
assumptions are re-evaluated, implementation issues and further research are
discussed in the conclusions.

2 Synopsis

This synopsis provides an introduction to the philosophy behind the framework
proposed. It should not be taken too seriously, and the serious-minded reader is
urged to continue straight to the next section (but maybe come back here in the
end).

There are three kinds of really different error handling in programs:

ImmediateCaller A subroutine foo calls subroutine bar which detects an er-
ror. The possible errors detected by bar should be documented and foo may
be able to recover or ignore some of them, based on the specific kind of error.
If it can’t, it’ll pass the failure upwards.
Conclusion 1 You may need to document specific errors and supply addi-

tional information to the immediate caller.
Since by definition exceptions are exceptional, in most cases ImmediateCaller
will propagate the exception.
Conclusion 2 In most cases, exceptions are handled somewhere else than

ImmediateCaller.
UpperLayer Subroutine baz gets the error passed up by foo. It no longer

knows about bar, so any documentation or specific error information pro-
duced by bar is no longer useful. But since the error didn’t originate in foo,
neither is any additional information supplied by foo (see section 4.4 for
some relaxations of this claim).
Conclusion 3 The error information must support generic handling strate-

gies, like a blind retry.
Conclusion 4 Low-level exceptions should not be remapped by upper lay-

ers.
Human The error cannot be corrected by the program, but must be corrected

by a human. Since the error was detected by bar, bar has the most specific
knowledge of the error and must describe it.
Conclusion 5 The routine detecting an error is responsible for describing

it in terms understandable to a human, often the user.
It is not always the user who can fix the error, but sometimes it is a system
administrator or even the programmer.
Conclusion 6 The system must be able to tell the user if they should con-

tact another human.
Now the user is told ’Contact your system administrator’. The error descrip-
tion given by the low-level routine is not shown to the user, but must be
forwarded to the administrator instead.
Conclusion 7 The system must produce different messages for consump-

tion by different humans.

If these three radically different ways of dealing with errors are not kept sepa-
rate, confusion ensues, and most current arguments in the developer community
can be seen as resulting from this confusion: The discussion of the relative mer-
its of checked exceptions [8] can be seen as mixing cases ImmediateCaller and
UpperLayer: for the cases when ImmediateCaller can do something, checked ex-
ceptions are great. It’s just that this is normally not the case, and so most effort
should be spent on something else. Error codes as error information (as in most
system calls, Unix, VMS or Win32) can be adequate for ImmediateCaller, but
often insufficient for UpperLayer and completely useless for the Human.

The claim of this paper is then that by keeping these separate and providing
facilities for programmers to take advantage of the separation, error handling
will both be easier to code and produce better results.

2

3 Preliminaries

The proposed framework stems from experience with certain kinds of systems,
and cannot be assumed to be directly applicable to all kinds of programming.
The kinds of systems are detailed here, as well as the notation introduced.

3.1 Border conditions and assumptions

Throughout, I will assume that the program does automatic backward error re-
covery. Backward error recovery means that after an exception occurs, the pro-
gram (block, component or system) returns to a known safe state, from which
the operation may be safely retried or abandoned. (for a more detailed introduc-
tion, see for example; NASA’s ’Software Fault Tolerance: A Tutorial’ [9, section
4.1.4].) Note that not all levels must implement perfect recovery (or make the
strong exception safety guarantee [10]), as long as the system as a whole knows
which levels are safe.

Backward error recovery also presupposes a“safe”programming environment:
an environment where errors cannot corrupt arbitrary state, e.g., buffer over-
flows. It is often necessary to assume safety even in environments which aren’t
strictly safe (such as C++), since otherwise we would not be able to do anything:
the program state may have been corrupted even if we do not detect any errors.

Implementing backward error recovery is orthogonal to almost all of the dis-
cussion. Whether you use transactions, finally-blocks, or Resource-Acquisition-
Is-Initialization [11, 129–130] to achieve rollback, rolling back should never de-
pend on what went wrong — just do it if something does. This treatment can be
seen as a form of forward-error recovery: how to continue after an error, towards
filling the goal — but from the point of view of the user, not just the program.

The argumentation will mostly be based on the assumption that there is a
human user interacting with the program, via some kind of keyboard-mouse-
display modality. I shall not consider batch-oriented or autonomous systems nor
tactile or voice-only modalities. Neither is the focus on high-reliability or real-
time systems.

This paper is based strongly on implementation experience with a single
medium-size (500 KLOC) system with a developer population of about 15. It
would seem that the framework I propose will yield increasing returns as the
system size grows, but I do not have empirical proof of that. Additionally the
framework has been applied to a smaller (150 KLOC) system with two develop-
ers.

3.2 Example environments

In discussing the requirements and program frameworks I will use two example
systems:

sys〈CCF〉 , a 500 KLOC web-based form-driven database-backed business sys-
tem that I was the system architect for, and

sys〈EMail〉 (not a real system, just a fictional example) an e-mail application

Figure 1’s rough system diagrams show the major independent subsystems in
both examples. The subsystems tend to have their own kinds of possible errors.

3

CCF EMail

Desktop UI

Application engine

User

Filesystem IMAP server

Remote filesystem

User

Web server

UI Layer

BL Layer

Database

Browser

Fig. 1. Rough system diagrams for example programs, identifying separate subsystems
and failure points.

sys〈CCF〉is selected since it represents real experience and an input-heavy,
typical business system with multiple layers and possible errors. It has no di-
rect manipulation and no local system component that the lower levels would
communicate with. The implementation uses a typical three-tier architecture.

An e-mail app has a very different user-interface style - direct manipulation
and a large local system component, which put different emphasis on error han-
dling. Although I have no experience on building one, it should serve as a good
example since most of the tasks and error-conditions should be well known to
the readers.

3.3 On Notation

The following sections will discuss four kinds of constructs, each identified by a
specific convention:

Entities like ent〈User〉. These are actors that may react to exceptions.
Strategies for continuing after an exception, such as str〈GiveUp〉. Strategies

categorize possible reactions to exceptions after backward recovery.
Informational requirements for handling errors like info〈Inputs〉— what in-

formation must be propagated up when an exception occurs, in one way or
another— and

Kinds of exceptions such as exc〈Bug〉. The kinds are selected so that they
influence strategies, entities or informational requirements.

4 Requirements and guidelines for an exception handling
framework

I first introduce a framework for reasoning about exception handling: entities
that handle exceptions, and strategies they can use. From these a number of
informational requirements for exceptions are derived.

4.1 What is exception handling: a framework

Definition: Exceptions are used to signal that a block cannot carry out it’s
assigned task. This includes Siedersleben’s Emergencies [12] as well as violated
pre- or post-conditions [7] (emergencies can be seen as a specific reason for

4

post-condition violations). I do not consider using exceptions for generic co-
routine -like control-flow manipulation (NOTIFY, and SIGNAL exceptions in
Goodenough’s original proposal [6]).

Exception handling is about what to do next. The goal is to succeed in
carrying out the task (or to give up). There are two orthogonal aspects in this:

– Who handles the exception:
ent〈System〉 the program or supporting system
ent〈User〉 the user
ent〈SystemAdministrator〉 a system administrator
ent〈Programmer〉 the programmer

– What do they do, which strategy to use:
str〈Retry〉 retry without changing anything
str〈ChangeSomething〉 change something and retry

str〈ChangeInput〉 change the input
str〈FixEnvironment〉 change environmental condition
str〈FixProgram〉 change the program
str〈Reset〉 reset to a known state
str〈ChangeState〉 change the subsystem’s internal state

str〈Alternative〉 use alternative implementation or instance
str〈GiveUp〉 give up (and propagate exception)
str〈Ignore〉 skip the action (ignore)

The entities are chosen to represent most of the real-world entities, but the gran-
ularity has been chosen to support the logical structure of the argumentation:
the different (We could easily divide the ent〈System〉either more along the lines of
the Synopsis, section 2, or into the application program, run-time environment,
agents etc. From the users point of view there may not exist an administrator
and a programmer, just “support”) entities can use different strategies. Although
much of current discussion does revolve around differences in ImmediateCaller
and UpperLayer, ImmediateCaller should seldom matter: exceptions should be
handled centrally and catch-blocks should be rare [13].

The strategies are supposed to be a fairly comprehensive union of forward-
recovery mechanisms proposed in the literature [14, p. 92] [9, p. 12–16][11, p. 130],
and encountered in real life, modulo the constraints given in section 3.1 (we are
not considering, for example, multi-version programming). Again, the granularity
is chosen to fit the argumentation, but reflects real-world differences in ease, cost
and results of using the strategy.

To carry out different strategies, the entities need information as to what
went wrong. These are the informational requirements exceptions should fulfill
(some of them are later expanded):

str〈Retry〉 : is the problem retriable (requirement: info〈Retriable〉)
str〈ChangeInput〉 : what input is wrong and how should it be changed (re-

quirement: info〈Inputs〉, info〈Message〉)
str〈FixEnvironment〉 : what is wrong with the environment, and which envi-

ronment (requirement: info〈Environmental〉, info〈Message〉)
str〈FixProgram〉 : what went wrong with the program and where (requirement:

info〈Program〉)
str〈Reset〉, str〈Alternative〉 : which subsystem failed and should be reset (re-

quirement: info〈Subsystem〉)
str〈ChangeState〉 : exactly what is the problem with the subsystem (require-

ment: info〈ErrorCode〉)

5

str〈Ignore〉 : whether it is safe to continue (requirement: info〈Corrupt〉)

Not all alternatives are available to all entities. The ent〈System〉 can mostly
do str〈Retry〉, str〈Reset〉, str〈ChangeState〉, str〈Alternative〉, str〈GiveUp〉 and
str〈Ignore〉— sometimes str〈FixEnvironment〉. The system should not normally
do str〈ChangeInput〉 on its own (although see [9, section 4.1.6]). Blind re-
tries without replication/multi-version programming (str〈Retry〉, str〈Reset〉) are
surprisingly effective: Grey describes such strategies extending Mean-Time-
Between-Failures by a factor of 5–100 [15].

The ent〈User〉 can carry out str〈Retry〉, str〈ChangeInput〉, some of
str〈FixEnvironment〉and maybe str〈Alternative〉. If none of these are ap-
plicable the user must be told who to contact (ent〈SystemAdministrator〉
or ent〈Programmer〉), in the info〈Message〉. Since in some cases the user
will be told how to fix the problem, and sometimes they will be asked
to contact somebody else, we need several error messages. We need
one message for each entity (info〈UserMessage〉, info〈AdministratorMessage〉,
info〈ProgrammerMessage〉). From the user’s point of view str〈GiveUp〉and
str〈Ignore〉tend to be same for single actions (like saving a file), but they may
be able to skip some parts of multi-step actions (like sending mail to several
recipients: if one of the addresses is invalid, the user may well want to sent the
message to the rest).

The ent〈SystemAdministrator〉can do all except str〈FixProgram〉, and
ent〈Programmer〉is the only one who can do str〈FixProgram〉.

Note that the question is not only about strict ability, but about efficiency. It
is (within reasonable time limits) much more efficient for the system to carry out
tasks than the user, the user rather than the administrator, and the administrator
rather than the programmer. So this hierarchy of cost should be respected in any
real system—but not to the extent of masking the actual source of error: if there
is a bug in the program, the user should be notified that this is the case so that
the program can be fixed.

There is also a very important subset of (str〈GiveUp〉): corrupt system state.
If the system notices that internal state has been corrupted in a way that requires
a restart or (worst case) manual intervention it should communicate this in clear
terms to the user so that data-loss can be minimized (info〈Corrupt〉).

The kinds of information noted above: info〈Retriable〉, info〈Inputs〉,
info〈Message〉, info〈Environmental〉, info〈Program〉, info〈Subsystem〉and
info〈ErrorCode〉, are the requirements for our exception objects. They will
be discussed in detail in the following sections.

4.2 Informational requirement info〈Inputs〉: what input was
erroneous, and how it should be fixed

The user’s primary (and you could say only) contact surface with a program is
the user interface. If the program asks the user to change the input, it should
indicate it on the user interface—not just via the text of an error message. E.g.,
when creating a new product in a product database with a name that already
exists, the name field on the form should be highlighted and the error message
printed next to that field. The user should not be made to guess which field to
correct (especially crucial, if it possible to key in multiple new products at once).
This is stated in most usability guidelines, and covered in detail by Alan Cooper
[4, p. 398–402].

6

In the era of dumb terminals connected to mainframes, a single special-
purpose program often accepted the input from a form and handled it all the
way through to the data file. It knew what the user’s domain was and what the
user interface looked like. This is still true of e.g., compilers: the whole compiler
knows that input comes in the form programming language constructs in files,
and even the back-end can construct error messages to take this into account.
A truly reusable component cannot do this—but it does not mean that we have
to abandon the goal of relating errors to the user’s domain.

This means that even a low-level component must be able to attach to the
exception a reference, that can be ultimately mapped to a user-interface element.
The actual values of the inputs are often useful as well, so that complete infor-
mation is easily serialized for logging, and in case the original fields are somehow
lost or modified.

There are two primary arguments against the need to identify user-interface
elements from lower-level code:

– Validation can be done at the user-interface level, like checking that only
numbers are typed in a number field. This is patently false in many cases:
• sys〈CCF〉: a uniqueness constraint for a named entity in the database

can be reliably checked for only by inserting into the database
• sys〈EMail〉: password for the IMAP server can only be checked by the

server; ability to copy messages to a folder only by copying
– the user interface should not allow the user to make errors (cf. Cooper [4,

ch. 28]), e.g., by selecting a date via a calendar instead of manually keying
in the date. This is false pretty much for the same reasons as the previous
claim: the user interface cannot reliably check all possible errors.

(I do not claim that Cooper isn’t right about error prevention being most effi-
cient, I claim that not all errors can be prevented in a multitasking, distributed,
multiple security domain environment).

In addition to noting which input field is to be corrected, the user must know
what is wrong with it (e.g., that a widget named“baz”already exists) to be able to
correct it. This message must be understandable to the user (info〈UserMessage〉),
and provide hints as to how the input could be fixed [16].

But not only invalid inputs need to be connected to user-interface elements.
Say an ’Out of disk space’ error occurs when writing to a local mail folder in
sys〈EMail〉. The operation is probably asynchronous, the user is already doing
something else when the exception is raised. It is much more tangible to the
user if the folder can be highlighted with the error message, instead of getting a
generic error notification.

User inputs may of course come from other sources than currently active user
interface elements. Settings should be identifiable in the same way, the location
of processing errors in files passed by the user as well (as a compiler does).

4.3 Something is wrong with the environment info〈Environmental〉

Environmental problems signal that things outside the software system in use are
in a state that make the action requested impossible. Examples are a full disk,
lack of network connectivity or lack of rights to write to a file/directory. They are
most often outside the scope of the system to resolve. Environmental problems
thus can be simply flagged as such to the program, regardless of the exact error,
and the program just needs to get the information to the right human.

7

Some of the environment in which the program operates may be controlled by
the user. This is true, for example, of the local file-system of a desktop application
(sys〈EMail〉). Some of the environment is not controlled by the user, even if the
problem manifests locally — like the inability to obtain an IP address via DHCP.
And parts of the program may rely on components running on other systems
like IMAP servers and databases, whose environments are definitely outside the
user’s domain.

If the user is in control of the problematic environment, then the problem
should be communicated to them in info〈UserMessage〉. If not, they should
be directed to contact the system administration, and helped to send them
the appropriate information. This information should be separate from the
info〈UserMessage〉, since it is not useful to the user and will probably contain
language and concepts alien and even frightening (info〈AdministratorMessage〉).

How does the program know whether the environment is under the user’s
control? In the general case, it cannot know for sure - but it can get it right in
many typical cases:

– an environment-exception from a remote system should be mapped to a
remote-environment-exception (exc〈RemoteEnvironment〉) at the communi-
cation boundary

– the remote system should be able to flag special
exc〈UserEnvironment〉exceptions when it knows that the former is not
the case (like out-of-quota on the IMAP server)

– local environment-exceptions can be assumed to be under the user’s control,
unless stated otherwise (the system component noting that there is no con-
tact with the DHCP server although the network is connected can flag this
as exc〈AdministratorEnvironment〉)

We can also try to err on the side of caution: unclear cases will be treated as
exc〈AdministratorEnvironment〉 exceptions. The advanced user can peek at the
info〈AdministratorMessage〉 to correct them.

4.4 Messages to humans info〈Message〉: info〈UserMessage〉,
info〈AdministratorMessage〉, info〈ProgrammerMessage〉 and
levels

Conventional wisdom [17] goes something like this:

– each subsystem documents/exception-declares a number of error codes or
exception classes that it may raise

– these should cover all cases when upper-level code can take some action
– layers must remap lower-level exceptions unless they have been declared to

be thrown by the subsystem
– the UI layer manages how errors are presented to the user and with what

messages, so that the lower layers can stay general and do not have to know
about the user

This might work with infinite resources to document, declare, correctly map
and handle all error conditions at all levels. Anybody who has used actual ap-
plications knows that this is not the case:

– The November 2004 ACM Queue [5] has several articles on time lost to
debugging when error information is wrongly mapped and hidden

8

– Even a recent (Office XP) version of Microsoft Word gives this error message
when trying to save a document to a write-only directory: ’Make sure the
disk is not full, that the remote system can be accessed, and that the disk is
not write-protected.’

– Trying to connect Mozilla Thunderbird to a misconfigured IMAP server:
• on connection, IMAP server notices it is too misconfigured to run and

drops the connection
• Thunderbird fails silently, since it assumes all connection errors to be

retriable

The detector creates the error message The solution is for low-level subsys-
tems to provide reasonable error messages in language understandable to those
that deal with the environment of that subsystem or with inputs to that subsys-
tem. E.g.: a database constraint (since coded by the application developer) can
already state in user-understandable language “A gizmo with the specified name
’foo’ exists already in the database”, or a filesystem can state ’you do not have
permissions to write to directory /bar/baz’, or that ’Disk D: is full’. This also
removes the problem observed in many cases where only error-codes are used
for exception information: although there is a string table somewhere that maps
the codes to descriptions, it may be hard to find (lives in a third-party DLL) or
not retrieved by the program.

The crucial step in the reasoning is to notice that levels of abstraction and
domains are not the same: although filesystem manipulation is very different
from the functioning of an e-mail client, errors with the local filesystem are
often in the user’s domain. Blindly translating lower-level exceptions to the as-
sumed user level can produce very bad results: transforming ’Quota exceeded on
/home/mraento’ to ’Cannot copy messages to folder’ where the latter helps the
user none whatsoever.

When can we show the low-level message? These messages can be shown
to the user (info〈UserMessage〉) if the conditions below apply:

1. for environmental exceptions, the environment is within the domain of the
user (discussed in the info〈Environmental〉section above)

2. the inputs related to non-environmental exceptions are within the domain
of the user

If the program knows that 2 holds, it can happily communicate the low-level
message upwards, eventually to the user with no need for mapping. If 2 doesn’t
hold, then the exception should be handled as an exc〈Bug〉exception and a
generic ’Contact support’ message put into info〈UserMessage〉(and the original
info〈UserMessage〉to info〈ProgrammerMessage〉).

How can the program then know that the input came from the user? In the
info〈Inputs〉section I argued that the exception should be able to refer (in a yet
unspecified way) to fields in the user interface when appropriate. If the program
notes that the info〈Inputs〉information in the exception does refer to something
in the user interface, then 2 holds. Let’s look at an example:

The sys〈EMail〉 application uses a library to handle mbox-format [18]
mail folders (files). This same library could be used from a command-line
program to modify mbox-files.

9

Now consider a ’File not found’ error when the library tries to open
the mbox file. If this is the result of the user selecting a drag-and-drop
target in the sys〈EMail〉 app, then it is the application’s fault: it should
not show non-existent folders and so the error is probably a bug (e.g., an
UTF-8 encoding error in the filename handling). If, on the other hand,
the filename was typed by the user as a command line, then the ’File
not found: quuz’ should be shown to the user.

In the first case a corresponding input field cannot be found, and so
the exc〈InvalidInput〉exception is mapped to a exc〈Bug〉exception - in the
second case the input does exist and the exception is used as-is.

There is a slight conflict here: to do this mapping from exc〈InvalidInput〉to
exc〈Bug〉, we want to limit inputs to those directly available from the user – but
in general we should try to map errors to the user-interface much as possible.
In the example, we would like the mbox file name to be linked to the folder in
the user interface. To fix this, we need to have an additional flag in the input
mapping: whether the input has been directly given by the user, or indirectly
derived from user input (or, in other words, related to user input).

What if we can’t? What if neither of the conditions 1 or 2 hold? Can we
do better than tell the user ’Internal error, contact support’? Again, traditional
wisdom seems to tell us to describe the whole chain of actions, so that the user
gets an error message:

Could not copy messages to folder X,
(because) could not open folder X
(because) the specified file does not exist

It requires all the larger steps to be named in the program, and the stack of
context put together either by making a context stack that is used when con-
structing the exception object (like info〈StackTrace〉), or by each larger change
of abstraction-level to catch errors and add their context to the message.

Now the question is: how useful is this? (I.e., does the user gain something
from such messages). The message will not enable them to fix the problem any
better, but it can still be useful if the user can use another strategy based on this
message, instead of str〈GiveUp〉do str〈ChangeInput〉str〈Ignore〉:

str〈ChangeInput〉 If there is an alternative course of action the user can take,
and the message helps in finding that course (copy to folder Y instead of X).

str〈Ignore〉 the action that failed can be skipped: the user can direct the pro-
gram to not do that step of a multi-step process (e.g., creating and sending
an invoice, where the sending fails but the user may specify that the invoice
should not be sent now but left in an pending-send state)

Can the program know that the current user action is made of several in-
dependent steps that may be skipped or whose inputs changed independently?
A subroutine does know that: if the routine’s steps rely on different inputs, or
a flag may cause it to skip some steps then that routine is made of indepen-
dent steps. The Controller in the Model-View-Controller paradigm [19, p. 4–6]
should know how the user’s actions are translated into steps in the program.
With sys〈CCF〉we initially had quite a few modules add their current context
to error messages, but it turned out it didn’t help the user at all. I think this
problem is hard to solve generically. When in doubt, don’t add context.

10

Localization Since the low-level components are producing end-user messages,
they need to be localized and aware of the end-user’s language. This may require
some changes to current call chains, but nothing insurmountable. Although re-
quiring a service to know the client’s interface language demands may seem
backward at first, it can be save huge amounts of effort: there may be tens of
thousands of applications that run on a specific operating system. If the operat-
ing system has localized messages, they only have to be written once.

On the subject of localization: it is perfectly normal not to lo-
calize info〈ProgrammerMessage〉and it may be acceptable not to localize
info〈AdministratorMessage〉. Not localizing them will probably make develop-
ers feel more free in providing more information, since they do not have to take
into account the cost and effort of localization and the code needed to support
it.

Never lose information! If the program does decide to remap an exception,
it should never throw away the original one (much of system and program de-
bugging time tends to be spent in trying to figure out what originally triggered
the fault). The original exception with no modifications should be stored in a
info〈InnerException〉field, and it’s messages be made available on request.

The idea of an info〈InnerException〉is not my invention, but consistent sup-
port for it is surprisingly new. The feature has been in Java from 1.4 and in .Net
from the beginning. In both it must be specified by the programmer, however.
In my opinion, the language should always supply the info〈InnerException〉when
constructing a new exception in an exception handler. There must be a way
to override this so that sensitive information is not leaked, but it must be the
default.

4.5 Just retry info〈Retriable〉

The simplest strategy for overcoming an exception is just to retry the action.
Simple retries can also be very effective [15]. This is suitable in many cases, like:

1. temporary resource exhaustion (no more database connections available)
2. contention for shared objects (deadlock in the database)
3. network errors (connection to IMAP server lost)

but on the other hand the same actions that trigger the above-mentioned con-
ditions may easily result in non-temporary errors as well

1. the database is down
2. the table referenced does not exist
3. the local network interfaces are down

The retriability/temporariness is often a matter of degree, rather than an
absolute— the database will probably come up again, and so will the local net-
work. The decision whether to retry automatically has to take time spans into
account. Retries can cascade, each layer doing it’s own retrying. It is not atypical
to see five layers, each doing five retries. If then the bottom-most action has a
fifteen second timeout the user may have to wait for six minutes (add two more
layers and it becomes 2.5 hours!). Routines that retry must both document their
retry behaviour and take a timeout parameter, which specifies how long they
may take to complete their work.

11

Note that for the retry strategy no further information on the kind of error
is needed—just a flag that states that the exception is retriable. Quite often
already the code that raises the lowest-level error (like the database deadlock)
knows whether the error is retriable, and if not it should be wrapped with a
Facade [19, p. 185–193] or aspects [20] to provide the information based on
info〈ErrorCode〉.

4.6 Where’s the bug in the program info〈Program〉
If there is an error in the program, it has to be unambiguously flagged as such,
since no amount of effort on the user’s part can fix the problem, although it
can be worthwhile to try to provide workarounds. Sometimes the program can
easily notice bugs (e.g., violations of pre- or post-conditions), but not nearly
always—sometimes of course bugs will not result in exceptions at all.

If the exception is the result of a bug, then the programmer needs as much
information as possible as to what the cause of the bug is. Typical desired infor-
mation is a stack trace with

– current function
– source code file and line,
– file version
– input variable values (when feasible)

These can collectively be called the info〈StackTrace〉. The point in the program
that detects the fault can often add a human-readable message for the program-
mer who has to debug the code (info〈ProgrammerMessage〉). Low-level routines
may want to add current CPU register contents to this.

This is of course not always complete: a single stray pointer in a C/C++
program may cause a totally unrelated part of the program to fail at an unrelated
time. To capture the original cause would mean to trace the total execution of
the problem, which is not normally feasible. The actual amount of information
has to be something less. Since this information does not necessarily have to be
machine readable, any additional bits can be put in info〈ProgrammerMessage〉.

4.7 Tell me exactly what went wrong info〈ErrorCode〉
The most general source for error information a programmer has to deal with is
the operating system or language platform. These tend to be mostly concerned
with error codes and/or exception classes [21], [22, ch. 20], [23], [24]. Many
language-oriented textbooks also seem to think that knowing the exact type of
an exception is what you need to handle errors correctly [25, ch. 13], [26, ch. 5]
[27, p. 138–139]. The analysis in this paper casts doubt on the usefulness of
error-codes (even when redressed as exception types). Neither do the constructs
displayed in these books support any strategies beyond those in this analysis, or
support these strategies well.

As seen in previous sections there are many important (simple and effi-
cient) automatic error-handling strategies that do not rely on what exactly went
wrong—instead they need some general characteristics of the error (whether it is
exc〈Retriable〉, exc〈InvalidInput〉, exc〈Corrupt〉, exc〈Bug〉, or exc〈Environment〉).

Assuming that low-level components may generate info〈UserMessage〉, there
is no benefit to error codes from the user’s immediate point of view (and they
may the single most criticized [4,16] aspect of error messages).

That said, there are at least two situations where error codes are definitely
useful:

12

1. Sometimes the layer above a certain subsystem can do error-specific actions:
mostly related to str〈ChangeState〉Real examples I know include:
– a build system resetting binary compatibility (BC) of a DLL when the

linker gives BC error (while in development cycle)
– a database client dropping indexes (and later recreating them) when the

database states that the desired column definition changes would break
the indexes

– And there is the canonical ’File not found’ exception example, where the
upper layer may create the file and retry.

It could be argued (and for the last case it is easy to do so) that these
cases are the result of poor design. Instead of the client of an API having to
catch an exception, change some of the state of the subsystem (or provide an
empty resource) the API should provide a function that does all this (both
Unix and Win32 provide means to open-or-create a file). Such an API would
enable the upper layer to more clearly state its intentions and probably be
less brittle.

2. Although from the user’s immediate point of view an error code cannot help
them, it can be convenient to have such an exact piece of information that
specifies the error. It can then be put to Google to find others suffering from
the same problem and maybe solutions. The localized error message does
not appear in posts half as often, and it may take time for developers to
decipher it.

On a related note, we are starting to see automatic bug resolution databases.
I have experienced a Windows XP installation reporting a driver error to
Microsoft and getting the prompted to install the correct updated driver
that fixed the problem. This is clearly useful, and requires that most of the
info〈Program〉information to be available in a machine-readable format.

All in all, I would say that we do need unique error codes, at the point of
detection. They just should not be confused with unique info〈UserMessage〉s.
And to make large systems maintainable [28, p. 347–348], the error codes should
be in hierarchical namespaces. This does not directly mean that they must be
classes, though - any namespacable identifiers will do.

4.8 SIDEBAR: Exceptions and error codes

Although exceptions were proposed already 30 years ago [6], there is still an
ongoing argument about the merits of exceptions vs. error codes as witnessed by
the amount of comments created by blogs discussing the issue [29,30].

The issue is muddled by the fact that exceptions can be both a control-
flow mechanism and an error-information mechanism. First a simple example.
Consider a (C) function (without error handling):

int foo(char* fn1, char* fn2) {
int fd1, fd2;
fd1=open(fn1, FLAGS);
fd2=open(fn2, FLAGS);
/* do something with fd1 and fd2 */
close(fd1);
close(fd2);

}

13

Now assume that this function uses a single integer code (whether as a return
value or via an exception mechanism) to communicate what went wrong if some-
thing does. Each of the open() calls may fail in, say, 50 ways. To communi-
cate exactly what went wrong, including with which of the two files, you need
50 · 2 = 100 error codes. In general you need (low-level error codes)·(low-level
calls) error codes from any higher-level function. It should be obvious that this
leads to a need for a combinatorial number of error codes—instead we should
use a combinatorial mechanism: exception objects with a number of fields.

The traditional fix has been to use a side-channel to communicate the details
of the error—often printing to a log or to stderr. But if the layer above needs
to actually use the extra information it has to parse this—often imprecise—side
channel. It should be noted that this kind of behaviour can be fully adequate
in monolithic systems where there is a well-defined logging channel, such as
command-line tools, database engines (for internal or environmental errors) or
operating systems; and many examples [31, ch. 4.7] and guidelines [17] actually
refer to such situations, obscuring the needs of systems built from fully reusable
components.

The non-locality of exception-based control-flow affects the informational
needs. It is all right for open(char* fn, int mode) to return a simple error
code, since it is always related to the inputs it got and the error code can only
be observed on the same line those inputs are specified. Now if the same error is
communicated with an exception that escapes to another scope the inputs are
not known anymore. Exceptions not only can carry more information, they must
do so. This fact seems to escape some developers, a notable case in point being
the smart-phone operating system Symbian: it uses exception-based flow-control
but only allows for one 32-bit word as information [32, ch. 6].

The greatest benefit of exceptions is (of course) the non-locality: you don’t
have to check the return value of all calls. Error-handling can not only be sepa-
rated from the normal flow, but it can also be massively reduced. Especially in the
face of run-of-the-mill programmers and a dependable backward error-recovery
mechanism this makes it much easier to construct reliable programs.

4.9 Which part failed info〈Subsystem〉

If the exception is not caused by something under the user’s control, then they
need to contact somebody else. A large system may consist of many independent
parts—info〈Subsystem〉s. To find the right person who can fix the problem, the
correct subsystem should be identified. (Note that it may not be necessary for
the user to directly know the correct person, as long as their helpdesk can easily
figure it out).

To increase fault-tolerance parts of systems may be replicated: several disks,
servers, instances of processes. If one of the replicas fail, it is reasonable to retry
the action on another one. It does not help, however, to connect to another
web-server, if the database is down. (In deciding whether to use another replica,
also the kind of error is important: it is no use trying to connect to another web
server if the HTTP request is invalid — a exc〈InvalidInput〉error — but this is
not always decidable).

The JavaGrid [33] provides a good example of the need to automatically
identify which subsystem failed. JavaGrid is an automated batch-processing en-
vironment, which allocates jobs to remote machines. To be able to effectively
handle processing errors, it needs to know whether they stem from a problem at
the remote machine (which can be fixed by resubmitting to another machine),

14

from the network environment (which must be communicated to the adminis-
trator) or from erroneous input (which the submitter of the job must be told
about).

The info〈Subsystem〉here is the physical subsystem: a run-time structural
property, not logical. It means an object instance, process, or node - not library
or class. Having such an information item will enable the fairly generic fault-
tolerance mechanism of micro-reboots: restarting subsystems instead of whole
systems, as proposed by Candea et al. [34].

4.10 Many exceptions? info〈NextException〉

It is often naive to stop the execution of the action at the first error in user input.
The user may provide many pieces of input (in sys〈CCF〉a large, multi-item web
form; in sys〈EMail〉when sending several mail messages; or as a source code file
to a compiler), and it is most efficient if we can validate all or most of the input
in one go.

Both .Net and Java assume that only one exception can be raised at a time.
SQL-92 and ODBC on the other hand support an arbitrary (up to 32000) excep-
tions from a single database operation. I would say that the database approach is
more efficient and generic. The program should be able to raise several exceptions
(info〈NextException〉).

The problem with several exceptions is that they become harder to handle.
It is very easy for the developer to just look at the first one and decide base on
that which strategy to choose. To fix this the first exception in a chain must be
modified, or in its placed added an exception, so that the first exception’s:

– info〈Severity〉 is the maximum of all info〈Severity〉s in the chain
– info〈ErrorType〉 is the union of all info〈ErrorType〉s in the chain
– info〈Inputs〉 is the union of all info〈Inputs〉s in the chain
– info〈Subsystem〉 is the union of all info〈Subsystem〉s in the chain

The implementation may well hide this construction in access functions to the
exception, and lazily construct such maximums and unions.

The user interface layer (and any logging layers) must of course loop through
all the exceptions, but such handlers should be very few in number and so added
effort can be spent in verifying their correctness.

4.11 Warnings info〈Severity〉

Often a program may decide on strategy str〈Ignore〉 or even str〈ChangeInput〉
[35, section 3.1]. A very common example is the web browser, which will silently
try its best on the face of invalid HTML [36]. Other typical examples include a
document-server that converts XML to PDF: it may encounter some unknown
formatting constructs or unavailable fonts - it should probably do it’s best to
produce output, while warning that the output may not be what was expected;
or a compiler that flags problematic but valid constructs.

A user facing warnings has basically the same choices as one faced with errors,
and so all of the reasoning above holds—warnings should have the same infor-
mation as exceptions. These results in a the need to specify a info〈Severity〉for
exceptions.

15

5 Conclusions, implementation notes and future research
topics

The information requirements derived in the previous section are pulled together
to a design for a generic exception class. Examples of how the class with its
information can be used in fully generic exception handling is shown. The imple-
mentation in sys〈CCF〉is discussed, as are possible difficulties in implementation.

5.1 So what should exceptions look like, then

Combining all of the requirements of previous sections, I propose that exception
classes should provide the fields given in Table 1:

info〈ErrorType〉 a bit-field of {INPUT, RETRIABLE, BUG, ENVIRONMENT,
USERENVIRONMENT, REMOTEENVIRONMENT, ADMINENVIRON-
MENT}. Indication of what strategies are applicable

info〈Severity〉: one of {INFO, WARNING, ERROR, CORRUPT}. Did the operation
succeed, can you continue.

info〈UserMessage〉: string. User-friendly error message that states what is wrong
and what can be done about it

info〈AdministratorMessage〉: string. The same as above, but in language and con-
cepts the user may not understand but the administrator does, or for an error the
user cannot do anything about

info〈ProgrammerMessage〉: string. Any internal details of the error that may help
in debugging

info〈Inputs〉: array of [field ref, field position, value, direct-flag]. The input field(s)
that are the cause of the error, position within field and value of field

info〈StackTrace〉: list of [function, arguments, source filename, line no, version].
info〈ErrorCode〉: hierarchical namespaced symbol. Exactly what error was detected
info〈Subsystem〉: tuple [namespaced symbol, string]. In which subsystem did the

error occur
info〈InnerException〉: Exception. What caused this exception in the rare cases when

we do need to map exceptions
info〈NextException〉: Exception. What other things should be fixed

Table 1. Exception class members

It may well be naive to enumerate all the error-types here. It might be better
to organize them into a hierarchical symbol namespace as well. Objects of this
class are on the large side, but not significantly larger than Exception objects in
Java and .Net.

There are some changes in comparison to Java and .Net exceptions.

– I feel that the simple change of splitting error messages into three categories
is an important one, and it provided us with good results when developing
sys〈CCF〉. It might not be unthinkable to only use two: user-friendly and
low-level.

– The severity is really only useful if we allow for warnings, otherwise
info〈Corrupt〉could be done differently (e.g., as one of the types)

16

– Requiring exceptions to identify info〈Inputs〉s is a heavy challenge with sub-
stantial benefits. It allows for much better user-interfaces and mapping of
one module’s exc〈InvalidInput〉 to another’s exc〈Bug〉 automatically and re-
liably. We did implement it in sys〈CCF〉, and the functionality is normally
supported (at least in part) in database interfaces and compilers, so it is not
unheard of.

– I do not have experience of the info〈Subsystem〉field, but it does seem neces-
sary for several real use-cases.

– Several exceptions from one action.

5.2 Should we allow for derivation?

It is not quite clear whether this single exception class would be sufficient, or
whether to allow for extension. Already Stroustrup claimed that exception classes
can be used to group related exceptions into hierarchies like Network_err [37,
p. 358–361]. This sounds like a nice idea, but I have seen no real world benefit
from it. The aspects of exceptions I have identified above, that are needed for
deciding what handling strategy to use, have nothing to do with such groupings—
the aspects crosscut different functional failures. Concrete examples of useless
exception hierarchies abound in Java: there is no commonality to IOException’s
that would allow the program to handle them intelligently together, and most
of the time new exceptions are defined it is to satisfy the idea of exception
declarations.

There is a need for hierarchical, namespaced symbols in exceptions for the
info〈ErrorCode〉. This should not be confused by a need for the actual exception
to be extensible. In fact there are a couple of good arguments against:

– to make generic exception handling possible, not knowing the exact type of
the exception thrown should not deny access to any information (this may
rule out new members from derived classes)

– it is beneficial to be able to transport exceptions between language environ-
ments - so all the information should be language-neutral

– derived exception classes are problematic in distributed computing since the
client may not have the implementation available for the exception it receives
over the wire

On the other hand there might be a need for additional machine-readable infor-
mation for str〈ChangeState〉, and so for additional members. This sentiment is
shared by Siedersleben [12].

Of the 130 exception classes most closely derived from Throwable in Java
[23] 21 extend the base class in some way (adding attributes). 13 of those do
it to support info〈Inputs〉, 8 of these with typed arguments: it is assumed that
the catcher will need to have a machine-readable info〈Inputs〉. Of the remaining
8, 5 encapsulate foreign exceptions (SQL, XA, Corba) and 3 have some specific
attributes. All in all it seems that extension is not needed often, but that there
may be a real need for it in some cases.

There is one clear axiom to exception class hierarchies though: Any excep-
tion attributes that are needed for generic handling need to exist in
the base-most exception class.

5.3 SIDEBAR: Error logs, error dumps and security

The mechanism proposed assumes that we want to bring up all the error infor-
mation to the interactive user. This may not always be suitable.

17

On the web the user may simply go away to another service provider. They
are very loosely connected to the system and do not have good incentives to
report errors. In such systems the same information that is given to the user
should also be logged by the program to a log file which can be periodically
checked so that the system quality can be improved.

The information proposed may contain sensitive data: local file names,
database connection details etc. It is not suitable to give these to untrusted sub-
systems or users. In these cases only info〈UserMessage〉should be propagated,
the rest logged to a local store with an id, and that id (and the store identifier)
propagated up. If the user decides to report the error, the store identifier and
error id can be used to look up (hopefully automatically) the details.

Sometimes you may want to dump a large amount of
info〈Program〉information, e.g., with exc〈Corrupt〉faults (Bruce Lindsay from
IBM tells of the DB2 database dumping huge amounts of internal state when
suspecting a bug [17]). It is not practical to propagate that. Again, using a store
name and dump id the dump can be later identified from the error report from
the user.

This does not mean that errors should normally be logged to a side channel.
Even if we assume that the program cannot take corrective action but the error
is propagated all the way to the user, it is very important that the user can
easily report all the details of the error. Much effort is currently spent in trying
to correlate the different error logs of different subsystems when users experience
errors or undesired behaviour [38].

5.4 Handling the exceptions

The whole idea of the proposed framework is to allow exceptions to be han-
dled in as few places as possible. (On the other hand detection may occur all
over the system). The most important handling point is the user interface event
loop (this sentiment is shared by C#’s chief architect Anders Hejlsberg [13]), for
processes without user interfaces the corresponding scope is the incoming mes-
sage loop. The exception handler should attach the error message to a suitable
area of the user interface, relating it to the corresponding user-interface elements
via info〈Inputs〉. The message shown can be selected as shown in Figure 2 (the
actual texts are meant to be illustrative, not realistic, and the code assumes
INNEREXCEPTIONs to be mapped to NEXTEXCEPTION):

Additionally the handler would probably select the location of the message
as well as it’s depiction (icons, colours) based on info〈Severity〉. Note how simple
the handler is.

Another place where you may want to place a handler is in the point where
you access a major separate subsystem. The handler will look like (the subsystem
reset is again not realistic, but illustrates the idea) the one in Figure 3.

You may additionally have the odd handler at ImmediateCaller where you
need to use str〈ChangeState〉.

To get the system to this point of simplicity, all the fault detection code must
put together exceptions as detailed above. In code under your control you must
provide primitives that make it easy to attach input references, localization of
info〈UserMessage〉and for throwing specific kinds of errors (e.g., exc〈Bug〉). For
code not under your control you will need a Facade through which all access
to such libraries occurs. This is not atypical of accessing third-party libraries in
real systems anyway.

18

catch(Exception firstExc) {

for (Exc=firstExc; Exc; Exc=Exc.NEXTEXCEPTION) {

switch(Exc.ERRORTYPE) {

case INPUT:

if (one of the fields in Exc.INPUT appears

in the user interface and has direct-flag set)

{

message=Exc.USERMSG

} else {

message=’The program encountered a defect.

Contact product support.’

}

case USERENVIRONMENT, ENVIRONMENT:

message=Exc.USERMSG

case BUG:

message=’The program encountered a defect.

Contact product support.’

case RETRIABLE:

message=’Your request could not be carried

out due to a temporary shortage of resources.

Please try again. If the error persists, contact

your system administrator.’

default:

message=’Contact your system administrator’

}

if (Exc.SEVERITY==CORRUPT) {

message.prepend ’The system has detected an internal

inconsistency and it is not capable of

continuing safe operation. Contact your

system administrator immediately.’

}

attach(message, Exc.INPUT)

}

}

Fig. 2. User interface exception handler

5.5 Implementation in sys〈CCF〉

sys〈CCF〉is based on the message-passing paradigm: the contents of web forms
are transformed into XML-based messages (which map 1–1 to the creation of
the forms), the UI layer communicates with the BL layer with messages, as do
different modules in the UI layer. All system state is kept in the database, so
backward error recovery can always be accomplished by rolling back the database
transaction. Implementation languages include Visual Basic 6.0, C++, PL/SQL
and Java. Support for the error handling paradigm is available in all language
environments.

Of the requirements presented here the following are supported:

– info〈ErrorType〉
– info〈Severity〉
– info〈UserMessage〉
– info〈ProgrammerMessage〉

19

catch(Exception firstExc) {

if (! time_limit_exceeded()) {

switch(firstExc.ERRORTYPE) {

case RETRIABLE:

goto retry

default:

if (firstExc.SEVERITY != CORRUPT &&

can_reset(firstExc.SUBSYSTEM)) {

reset firstExc.SUBSYSTEM

goto retry

}

} else {

for (Exc=firstExc; Exc; Exc=Exc.NEXTEXCEPTION) {

switch(Exc.ERRORTYPE) {

case ENVIRONMENT, ADMINENVIRONMENT:

if (subsystem_is_remote()) {

Exc.ERRORTYPE=REMOTEENVIRONMENT

}

}

}

rethrow firstExc

}

Fig. 3. Major subsystem interface exception handler

– info〈Inputs〉
– info〈StackTrace〉
– info〈ErrorCode〉
– info〈NextException〉
– Maximum of info〈Severity〉and union of info〈ErrorType〉for chained excep-

tions.

Notable omissions are info〈Subsystem〉 and info〈InnerException〉. sys〈CCF〉 does
not include any internally developed separate run-time subsystems. It was as-
sumed that any restarts of the web server or database will be managed by
the system administrator, not automated error handling. info〈InnerException〉
were originally supported, but had so few uses (due to not mapping excep-
tions) that the few cases where changed to use info〈NextException〉(from the
user’s point of view the difference is very small). info〈AdministratorMessage〉and
info〈ProgrammerMessage〉were merged into one field.

Input references, info〈Inputs〉, are accomplished by always using messages as
input. Even a module’s internal functions get references to parts of the messages
instead of plain programming-language datatypes. (This is not strictly the case
with database access and PL/SQL code. There input mapping is restricted to
giving the row of array binds and the upper layer using database constraint
names to map to bind variables. The bind variables themselves have again a 1–1
mapping to messages fields, maintained by the database Facade.)

Implementation-wise, the language-level exceptions were not used to trans-
port the information, as they were not sufficient in the main implementation lan-
guages, Visual Basic and PL/SQL. Instead subroutines had access to a response
message object in which they put error information. A special language-level ex-
ception was then used to indicate that the operation failed and that details were
put in the response message. The mechanism is reminiscent of Unix/C errno,

20

but with no chance of losing information. The response message paradigm sup-
ported also warnings and informational notes from any level of code. There was
some programmer-discipline needed to transfer errors from lower-level responses
to upper-level ones, but this soon became idiomatic (and only needed a single
function call).

The major deficiency in the framework implementation was the need to man-
ually map input references if data was to be manipulated. This was supposed
to be handled in the subroutine that called another module, after getting back
an error message. Sometimes the mappings were not performed by developers or
were not correct. The deficiency had surprisingly little actual effects: normally
user input was just re-ordered, re-structured or split into different messages.
These operations were reference-preserving. Another concrete problem was that
Visual Basic necessitated duplication of module-level error-handlers, since the
language does not support inheritance of implementation.

The resulting system’s error messages were very successful. Consistent vi-
sual indicators allowed users to quickly see whether operations succeeded or
not. Errors that required changing input were attached to the corresponding
input fields allowing the user to easily find what to correct even with large
forms. All error information was brought to the user’s browser, where it could
be forwarded to local support (subsuming from the user’s point of view the
ent〈SystemAdministrator〉and ent〈Programmer〉). Most of the time system ad-
ministrator’s were able to correct server-side problems without having to con-
sult external logs and developers tended to have quite a good idea of where to
start debugging if there was a program defect (additionally, the whole input
message was available to the developer). The generic exception handlers were
basic implementations of the handlers in the previous section.

5.6 Notes on implementing info〈Inputs〉

The framework proposed is mostly quite easy to implement (Although
info〈StackTrace〉can be problematic in older environments with optimized pro-
grams, e.g., if no stack frames are generated for leaf functions). The only real
problem implementation-wise is info〈Inputs〉. It would seem to require a lot of
effort from the programmer, language support, or an unusual datatyping model.
There are, however, several implementations of similar constructs.

Perl’s Taint mode tracks a single-bit flag from external inputs, propagating
the flag through data-flow [39, p. 355–636]. It has simplistic rules (only assign-
ments to expressions propagate the flag, not if/switch), but the mechanism does
work over arbitrary function calls.

Parsers and compilers keep track of what tokens come from which file, row
and column of input. This includes programming language compilers, query
parsers and XML processors. These programs of course receive a highly struc-
tured input: a file or text buffer, where input can always be identified in the
same way. It should be noted though that propagating the input file position
throughout compiler passes is still a non-trivial problem, but is deemed to be
necessary by the (good) compiler community.

There is thirty-years of literature on tracking the confidentiality of informa-
tion in programs, secure information flow [40]. For keeping track of input refer-
ences tracking only explicit information flow would be suitable, with probably ad-
ditional primitives for semantics-preserving mapping of data (such as character-
set mapping, 1–1 code lookups etc.) which will specify the direct/indirect flag.
The information flow theory has been unsuccessful in gaining acceptance with

21

practitioners despite implementations [41]. Careful attention must be paid to
that failure and its reasons if similar techniques are to be used.

The sys〈CCF〉experience shows that message-passing systems are highly suit-
able for info〈Inputs〉. The message-passing paradigm has other favorable qualities
(freedom of implementation language, flexible run-time structure, batching sup-
port), but has drawbacks as well (it is harder to see what the control flow is,
which modules are invoked and the need to either map message structures to
programming-language structures to allow for static typing or to use run-time
type checking).

Finally, tracking references to the user-interface throughout information flow
need not be prohibitively expensive. All the references will relate directly to input
by the user, which is always constrained to a fairly small size by the fact that it
has to be keyed in by a human and shown on a single computer screen (file input
is a special case, and it can be tracked easily on a filename-line-column basis). So
the amount of overhead is not extreme in most cases. (This is obviously not true
for certain classes of systems, such as numerical computation or data mining.)

5.7 Conclusions and future work

This proposal suggests several fundamental changes to the way error information
is constructed and errors handled in most literature. There is good reason for this,
though, as the current way of thinking definitely isn’t producing good results.
The proposal has been evaluated with a real-life system with good results.

There exist earlier error-handling proposals that have died because they were
too hard to use. The X.500 error objects died together with the whole X.500
directory service (in favor of things like LDAP). The proposed framework is
supposed to make it easier to handle errors while getting better results: both
throwing exceptions and handling them are easier. Throwing since the program-
mer knows how to do it, can rely on all of his effort reaping benefits since
no information is lost, and being able to distinguish between user-friendly and
programmer-friendly information. Handling since it can be almost fully generic
and so appears in only a few places.

Several aspects of the framework need to refined by other implementations:
are derived exception classes really necessary and when, how do we know when to
add upper-level (contextual) messages to errors, and what error types are needed.
Efficient implementation of the input data references in different environments
is a serious research problem.

Although the answers are not fully specified yet, the experience with a real
implementation suggests that the framework is usable. It does not have to be
uniformly supported by all libraries, subsystems and applications either: the
principles can be used to get good error handling and error messages out of
particular parts of a system as well.

Maybe most importantly, this paper should serve as a starting point for
an ongoing discussion of how errors should be handled in typical real-world
programs and projects. Such discussion has been sorely lacking.

References

1. Horning, J.J.: What the compiler should tell the user. In: Compiler Construction,
An Advanced Course, 2nd ed., London, UK, Springer-Verlag (1976) 525–548

2. Brown, P.J.: Error messages: the neglected area of the man/machine interface.
Commun. ACM 26 (1983) 246–249

22

3. Lewis, C., Norman, D.A.: Designing for error. (1987) 627–638
4. Cooper, A.: About Face. The Essentials of User Interface Design. IDG Books

Worldwide, Inc., Foster City, CA, USA (1995)
5. Edward Grossman (ed.): ACM Queue. 2 (2004)
6. Goodenough, J.B.: Exception handling: issues and a proposed notation. Commun.

ACM 18 (1975) 683–696
7. Cristian, F.: Exception handling and software fault tolerance. IEEE Transactions

on Computers 31 (1982)
8. Kiniry, J.R.: Exceptions in java and eiffel: Two extremes in exception design

and application. In Romanovsky, A., Dony, C., Knudsen, J.L., Tripathi, A., eds.:
Proceedings of the ECOOP 2003 Workshop on Exception Handling in Object-
Oriented Systems. Number 03-028 in Computer Science & Engineering Technical
Reports, University of Minnesota (2003)

9. Torres-Pomales, W.: Software Fault Tolerance: A Tutorial. Technical Report
NASA/TM-2000-210616 (2000)

10. Sutter, H.: More exception-safe generic containers. C++ Report 9 (1997)
11. Martin D. Carroll, M.A.E.: Designing and Coding Reusable C++. Addison-Wesley

Publishing Company, Inc. (1995)
12. Siedersleben, J.: Errors and exceptions. rights and responsibilities. In Romanovsky,

A., Dony, C., Knudsen, J.L., Tripathi, A., eds.: Proceedings of the ECOOP 2003
Workshop on Exception Handling in Object-Oriented Systems. Number 03-028
in Computer Science & Engineering Technical Reports, University of Minnesota
(2003)

13. Venners, B.: The Trouble with Checked Exceptions, A Conversation with Anders
Hejlsberg, Part II (2003). http://www.artima.com/intv/handcuffs2.html

14. Howell, C., Mularz, D.: Exception handling in large ada systems. In: WADAS ’91:
Proceedings of the eighth annual Washington Ada symposium & summer SIGAda
meeting on Ada, ACM Press (1991) 90–101

15. Grey, J.: Why Do Computers Stop and What Can Be Done About It? Technical
Report 85.7 (1985)

16. Molich, R., Nielsen, J.: Improving a human-computer dialogue. Commun. ACM
33 (1990) 338–348

17. Bourne, S.: A conversation with Bruce Lindsay. ACM Queue 2 (2004) 22–33
18. Hall, E.A.: IETF. RFC 4155. the application/mbox media type (2005)
19. Gamma, E., Helm, R., Johnson, R., Vissides, J.: Design Patterns. Elements of

Reusable Object-Oriented Software. Addison Wesley Longman, Inc., Reading,
Massachusetts, USA (1995)

20. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28 (1996) 154
21. Microsoft: Platform sdk: Debugging and error handling: System error codes. on-

line (2005). http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/debug/base/system_error_codes.asp

22. Raymond, E.S.: The Art of Unix Programming. Addison-Wesley Longman Inc.,
Reading, Massachusetts, USA (2003)

23. Sun Microsystems, Inc: JavaTM 2 SDK, Standard Edition Documentation. online
(2003). http://java.sun.com/j2se/1.4.2/docs/

24. Liberty, J.: .net exceptions make the transition from traditional visual basic error
handling to the object-oriented model in .net. MSDN Magazine (2002)

25. Deitel, H., Deitel, P.: C++ How to Program, 2nd edition. Prentice Hall, New
Jersey, USA (1997)

26. Gehani, N.: Ada, an advanced introduction. Prentice Hall, New Jersey, USA (1983)
27. Arnold, K., Gosling, J.: The Java Programming Language. Addison-Wesley Long-

man Inc., Reading, Massachusetts, USA (1996)
28. Lakos, J.: Large-Scale C++ Software Design. Addison-Wesley Longman, Inc.,

Reading, Massachusetts, USA (1996)
29. Spolsky, J.: Joel on software: Exceptions. online (2003). http://www.

joelonsoftware.com/items/2003/10/13.html

23

30. Chen, R.: The old new thing: Cleaner, more elegant, and wrong. online (2004).
http://blogs.msdn.com/oldnewthing/archive/2004/04/22/118161.aspx

31. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley Long-
man Inc., Reading, Massachusetts, USA (1999)

32. Harrison, R.: Symbian OS C++ for Mobile Phones. John Wiley & Sons Ltd, West
Sussex, England (2003)

33. Thain, D., Livny, M.: Error Scope on a Computational Grid: Theory and Practice.
In: Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11 ’02), IEEE Computer Society (2002) 199–209

34. Candea, G., Brown, A.B., Fox, A., Patterson, D.: Recovery-oriented computing:
Building multitier dependability. Computer 37 (2004) 60–67

35. Wielemaker, J.: An overview of the swi-prolog programming environment. In:
Proceedings of the 13th International Workshop on Logic Programming Environ-
ments. Volume CW371 of Report., Katholieke Universiteit Leuven, Department of
Computer Science, Celestijnenlaan 200A, B-3001 Heverlee (Belgium) (2003)

36. Horning, J.J.: Risks of lenient parsing. online (2005). http://horning.blogspot.
com/2005/01/risks-of-lenient-parsing.html

37. Stroustrup, B.: C++ Programming Language, 3rd edition. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, USA (1997)

38. Maglio, P.P., Kandogan, E.: Error messages: what’s the problem? Queue 2 (2004)
50–55

39. Wall, L., Christiansen, T., Schwartz, R.L.: Programming Perl. 2nd edn. O’Reilly
and Associates, Inc., Sebastopol, CA, USA (1996)

40. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE
Journal on Selected Areas In Communications 21 (2003)

41. Zdancewic, S.: Challenges for information-flow security. In: Proceedings of the 1st
International Workshop on the Programming Language Interference and Depen-
dence (PLID’04). (2004)

24

