
The Five-of-Eight Fallacies of Context-Aware
Prototyping

Mika Raento

Helsinki Institute for Information Technology
Department of Computer Science, University of Helsinki

mraento@cs.helsinki.fi

Introduction

Peter Deutsch summarized experiences in building real distributed systems into
the Eight Fallacies of Distributed Computing [1]:

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.
1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn’t change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

When building real systems we often start with a prototype (this method
was immortalized by Frederick Brooks [2] as “Plan to throw one away; you will,
anyhow”). The idea is that the prototype will be much easier to construct, often
by ignoring at least some of the eight issues above, while giving close estimates on
some other properties of the system, such as performance requirements, usability
or applicable technologies.

Context-aware computing [3] is still in its infancy. I would claim that basically
all systems we are building today that we call context-aware are prototypes. Since
they are prototypes, we assume that we too can ignore the eight issues above.
But that assumption proves to be false. Context-aware systems are meant to be
used throughout people’s everyday lives. That means they are not the classical
prototypes: used under the supervision of developers, and in settings limited
both in space and time. In many ways they must be much nearer real systems
than prototypes of other programs.

This paper looks at each of the eight fallacies in the light of building context-
aware prototypes. We claim that we can ignore three of them, mostly with the
reasoning that they haven’t hit us yet. The remaining five are discussed in detail,
relying on experience from building the ContextPhone context-aware prototyp-
ing platform for smartphones [4].

1 The network is reliable

In the prototype lab you can make the network fairly reliable, and more impor-
tantly you, the developer, are there to aid when the network isn’t. This isn’t the



case when you give users a device to take home with them. The reliability should
be seen as an end-to-end quality [5] of the system, including components built
by you or provided by the platforms used.

In ContextPhone we built code that recovered from routine network failures—
dropped connections, unresponsive servers and crashes of components. What we
didn’t do was to take into account how the failure of the network affected the
user: media published would take unpredictable time to arrive on the server,
the phone might unexplicably try to connect to the network all the time, and
information about others in the presence service [6] was not up-to-date without
the user necessarily knowing that. We failed to keep the user informed of the
consequences of the unreliability, to show the seams of the technology [7] by
assuming that faults would be too rare to bother the user about.

2 Latency is zero

Latency can be ignored in the laboratory. Users can be talked to while they
are performing actions. Latency-dependant operations like clock-synchronization
can be done manually, or hidden by the prototype software. Real context-aware
systems are supposed to work with varying networks (Bluetooth, Wi-Fi, GPRS
and various and sundry ad-hoc networks) with varying and often large latency.

Uncharacteristically, we use an example from another project, Nokia’s Multi-
User Publishing Environment (MUPE) [8]. MUPE is meant to be a rapid-
prototyping platform for social, mobile and context-aware games and collab-
orations. In our experience at HIIT, it fails in large categories of these, since
it assumes that users can wait for server round-trips with most actions. This
proves not to be the case in the field.

With ContextPhone we have assumed that a message takes such a short time
to arrive that the message’s timeliness can be measured looking at the time the
message was sent. To prove this false in a GPRS-connected device is left as an
exercise to the reader.

3 Bandwidth is infinite

Luckily, even lab-testing on real devices tends to show actual bandwith and I
think the fallacy is not committed very often.

4 The network is secure

The network in the laboratory can often be made “secure enough”, or the data
limited to a safe subset. The prototype doesn’t have to implement encryption,
signing or secure logins. This is lucky, since the devices and platforms we use,
like Symbian [9] don’t provide these primitives for our applications either.

When we hand out a context-aware device to a user to be used in their private
lives, the context data becomes a liability. Location, social encounters, phone
calls and activities are personal data in the meaning of both data protection
legislation [10] and perception of the users. Suddenly we must provide strong
encryption to be fair and legal. We must confess that ContextPhone still lacks
the necessary primitives, and that we have had to convince our users that the
risk is small enough in the hope they don’t ever make a fuss about it.

2



5 Topology doesn’t change

You set up your test-and-prototype network and show the prototype to users.
There is no need to change the setup while the prototype runs. If you should
need another topology (say a server crashes) you recode the necessary bits. Since
all of the devices running the software are near, this is not a great effort.

We give ContextPhone-based applications to users for 1–3 months at a time.
If a server crashes, we can’t just reload a new version of the software on the
phones. We currently have, hah, a prototype of remote settings, but this needs
a connection to a server, ending in a nice catch-22. A context-aware prototype
needs the ability to either automatically reconfigure itself when changes in the
network happen, or multiple independent ways of remote reconfiguration. Both
take a non-trivial amount of time to implement.

6 There is one administrator

The organizational setting of the prototyping process doesn’t change as much
with context-aware systems as other aspects. We can still assume, that there is
one entity responsible for running the system.

7 Transport cost is zero

You can provide your own network in the lab. It might not be completely free,
but you can often amortize it in a way that the amount transmitted by the
prototype doesn’t seem to increase the cost. You can trade amount of data
transmitted against more complex implementation (caching, distributed data,
compression, rate-limiting etc.).

We actually implemented rate-limiting in ContextPhone. It just wasn’t
enough. In our last field-study we gave the users a version of the presence ser-
vice that allowed them to give a free-text description of their current situation.
Presto: free instant messaging. Even with the rate-limit the users filled their 100
megabytes/month subscriptions and went above that by another 50 megs. This
cost us several hundred euros per user, and since we reimbursed them for the
sum later, a significant cash-flow issue to the users as well.

8 The network is homogeneous

We can assume the network to be as homogenous as we want by only handing
out devices of the kind(s) we want. That the users might want them to work
with other devices as well is another story...

Conclusion

Context-aware system prototypes have surpisingly much in common with what
could be termed real systems in other settings: they are used without supervision,
by naive users, over extended periods of time and with varying connectivity.
These mean that Peter Deutsches fallacies are relevant. A prototyping platform
for context-aware applications needs to take them into account, which we have
not fully done.

We have claimed that only five of the eight fallacies are actually relevant. We
are worried that this is not true.

3



References

1. Deutsch, P.: The eight fallacies of distributed computing. online (2004). http:

//today.java.net/jag/Fallacies.html

2. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley Longman, Inc., Reading, Massachusetts, USA (1975)

3. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human Computer
Interaction 16 (2001) 97–166

4. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: Contextphone, a prototyping
platform for context-aware mobile applications. IEEE Pervasive Computing 4
(2005)

5. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Trans. Comput. Syst. 2 (1984) 277–288

6. Oulasvirta, A., Raento, M., Tiitta, S.: Contextcontacts: Re-designing smartphone’s
contact book to support mobile awareness and collaboration. In: Proceedings of
the 7th International Conference on Human Computer Interaction with Mobile
Devices and Services, MOBILEHCI’05. (2005)

7. Chalmers, M., Galani, A.: Seamful interweaving: Heterogeneity in the theory and
design of interactive systems. In: Proceedings of the 2004 conference on Designing
Interactive Systems (DIS) 2004, New York, USA (2004) 243–252

8. Suomela, R., Räsänen, E., Koivisto, A., Mattila, J.: Open-Source Game Devel-
opment with the Multi-user Publishing Environment (MUPE) Application Plat-
form. In Rauterberg, M., ed.: Entertainment Computing ICEC 2004: Third Interna-
tional Conference, Eindhoven, The Netherlands, September 1-3, 2004. Proceedings.
(2004) 308–320

9. Harrison, R.: Symbian OS C++ for Mobile Phones. John Wiley & Sons Ltd, West
Sussex, England (2003)

10. The European Commission: Directive 95/46/EC on the protection of individuals
with regard to the processing of personal data and on the free movement of such
data. Official Journal of the European Communities (1995) 31–50

4


