Clustering in Context

Kari Laasonen
Kari.Laasonen@cs.helsinki.fi

University of Helsinki – Department of Computer Science
General Approaches

1. Detect typical contexts
 - Clustering
 - Goal: help users to adapt to context changes
 - Presentable information

2. Predict appropriate behavior
 - Classification/machine learning
 - Goal: the device reacts to context changes automatically
 - Recommendations for the user (acting without user consent is risky)
Clustering Context Data

- **Online clustering**
 - Clusters are updated with each new data point
 - This could be done with BIRCH-like summaries
 - Initially: collect data for time T, then analyze the results

- **Amount of data**
 - Phone memory is a scarce resource
 - But does a single user generate enough data?

- **Categorical data and metrics**
Projective Clustering
Projective Clustering

- Assume data points are d-dimensional
- Geometric intuition breaks down for large d
- “Curse of dimensionality:” everything is far away
- Projective (or subspace) clustering attempts to find relevant dimensions or subspaces
- Project the data on a D-dimensional subspace ($D \ll d$) and see what it looks like
- Subspaces are typically aligned with coordinate axes; this is easier and works well in practice.
CLIQUE

Devised by Agrawal et al., ACM SIGMOD ’98

- Clusters have a higher density of points than its surroundings
- To detect areas of high density, partition the space into cells
 - On the first round, cells are one-dimensional
 - Dense cells of dimension $k - 1$ are combined to generate candidate cells of dimension k.
 - A database pass prunes sparse cells
- Strongly resembles the Apriori algorithm for finding frequent sets
Monte Carlo Approach

Procopiuc et al., ACM SIGMOD ’02

- **Greedy:** finds one optimal cluster.

- **Generates candidate clusters randomly:**
 - Choose a point p in the cluster
 - Choose a discriminating subset X
 - If dimension i is in the cluster, then $|q_i - p_i| \leq w$ for all $q \in X$
 - Otherwise there is $q \in X$ such that $|q_i - p_i| > w$.

- Choose the candidate that maximizes a goodness metric.
Monte Carlo Approach

- Repeat the process to boost success probability.
- For typical parameter values, the number of candidates is $O(d^5)$ and $|X| = O(\log d)$.
- Other approaches are worse: the running time of (plain) CLIQUE is $O(c^k)$, where k is the highest dimensionality of dense cells.
Issues to Consider

- **Parameters**
 - Density threshold
 - Cell size/box width
 - Balance between number of points and number of dimensions

- **Efficiency**