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Abstract. Location-awareness is useful for mobile and pervasive com-
puting. We present a novel adaptive framework for recognizing person-
ally important locations in cellular networks, implementable on a mobile
device and usable, e.g., in a presence service. In comparison, most previ-
ous work has used service infrastructure for location recognition and the
few adaptive frameworks presented have used coordinate-based data. We
construct a conceptual framework for the tasks of learning important lo-
cations and predicting the next location. We give algorithms for efficient
approximation of the ideal concepts, and evaluate them experimentally
with real data.

1 Introduction

Location-awareness has several applications in ubiquitous computing. Location-
triggered reminders are a simple example (e.g., [1]), adaptive systems that use
location as a part of the input for adaptation are more ambitious. Location
is also an important clue about a person’s communication context, and giving
out this information in a form of presence service can enable more efficient
communication (see, e.g., [2]).

We present an adaptive framework for building location-awareness from cell-
based location data, especially GSM-network cell information. The goal is to be
able to learn, within the mobile device, personally important places and routes
between them without knowledge of the physical topology of the network.

Most previous work on location-awareness is based on pre-defined location
infrastructure and rules about the use of this infrastructure, although the appli-
cations do not always strictly demand it. Instead, we are interested in building
a learning, adaptive framework for individual location recognition. There has
not been very much work in this area, maybe the best-known examples being
Marmasse and Schmandt’s comMotion [3] and Ashbrook and Starner’s work [4].
Both of these approaches use coordinate-based location data, provided by GPS.

Our contributions are twofold. First, we create a conceptual framework for
identifying important locations and routes from cellular network data (Sect. 2).
The important locations that we can automatically recognize from a user’s lo-
cation data are called bases. If the user is moving, we try to recognize the route
and aim at predicting the base the user is heading to. Since routes sometimes
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fork and may lead to several bases, we group bases into areas and use these as
route targets if a single base cannot be determined with high enough confidence.

Second, we give efficient methods for analysing the observed cellular data
on a mobile device, e.g., a cellular phone (Sect. 3). Implementing the adaptive
location-awareness system on the mobile device is challenging, mainly because of
limited resources. A major advantage is that this enables the building of location-
aware systems without additional service infrastructure. Several privacy issues
are also avoided, since the location data is held within a device owned by the
user.

An experimental evaluation of the concepts and algorithms is given in Sect. 4,
using real GSM data from three users, covering a period of six months. Section
5 contains conclusions and outlines future research issues.

2 Locations, Bases, Areas, and Routes

Our goal is to automatically recognize locations that are somehow significant to
the user and routes between those locations. As an example application, consider
a presence service. We want to describe the current whereabouts of the user. If
the user is at a well-known, important place, this is a useful description. If
he is not, knowing where he is going to (and coming from) is an informative
description of his context. For example, assume that Bob is waiting for Alice
at a restaurant. Checking Alice’s presence information he could see either that
Alice is still at work, has left work and is heading towards the restaurant (or
an area including the restaurant) or is heading somewhere else. Based on this
information Bob has a fairly good idea of whether he should remind Alice of the
meeting or not.

2.1 Locations and Bases
Recognizing locations from GSM cell data is challenging, for a number of reasons:

— Cells can be very large, up to some kilometers in diameter, especially in
sparsely populated areas.

— Areas covered by base stations overlap, so that several cells may be seen in
a single location.

— Overlap of cells and radio signal shadows can cause cells to be non-contiguous
areas.

— There is no one-to-one correspondence between a physical location and the
cell used by a phone, e.g., due to changing radio interference.

Other types of cellular networks are likely to have similar properties. An advan-
tage of GSM cellular data is that it is available almost everywhere.

The location data available for a single device consists of a time-stamped
sequence of transitions between cells. A correponding cell graph serves as an
abstract representation of the cell topology, without reference to any physical
locations.
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Definition 1 (Cell graph). The cell transitions of a given user define a di-
rected unweighted cell graph G. = (V, E), where the set V of vertices consists
of all observed GSM cells, and there is an edge (c;,c;) € E if and only if a
transition between c; and c; has been observed.

Several overlapping cells can be frequently seen at a single location. In ar-
eas with a dense GSM network, it is typical that even if the user stays in one
room, the serving cell may oscillate between two or three alternatives. On the
other hand, physical back and forth movement most often also indicates a single
semantic location, for example when moving around in an office. When such
oscillation is observed, we therefore cluster several cells together.

Definition 2 (Cell cluster). Given a cell graph G. = (V, E), a set C CV of
cells is a cell cluster, if and only if

1. The cells form a subgraph of diameter at most 2 in the cell graph G..
2. The average length of a visit to the cluster is t_avge > |C|max.cc t-avge.
8. Any proper subset of C does not satisfy condition 2.

The first condition simply requires that all cells in a cluster are near each
other. The second condition tests oscillation: the average time spent visiting a
cluster is larger than the sum of the individual times only when the user moves
back and forth between the cells in the cluster (]C|max.cc t-avg. is an upper
bound for the sum of individidual averages, and makes the condition relative
to the most important cells). Without the last minimality condition some extra
cells could possibly be included in cell clusters.

If the user is at a cell that belongs to multiple clusters it is unclear which of
the clusters he really is at. There are several alternative ways of dealing with this;
for simplicity, we recursively combine all the clusters that have shared cells. This
leads to a partitioning of the set of cells to distinct locations. The term “location”
is used in this formal meaning in the definitions and algorithms that follow.

Definition 3 (Location). Given a cell ¢ and a cell graph G. = (V, E), cell ¢
is at location

loc(c) = {c}, if ¢ does not belong to any cluster;
" <l(C), if ¢ belongs to cluster C,

where cl(C) is the transitive closure of overlapping clusters:

di¢)y=cu J ().
C':CNC'#£D

The set of locations is

L = {loc(c) | c € V}.
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The goal is that locations, as defined above, are the smallest reliably dis-
tuingishable units in a GSM cell data. Bases, or important locations, can now
be defined simply as locations where the user spends a large portion of his time.
However, we want to give more weight for locations visited more recently, in
order to adapt to changes in users’ movement patterns.

Definition 4 (Bases). The (weighted) time spent in location L is

tnow
time(L) / aty ()rteoe—t dt,

to

where to is the time of the first observation, thoy s the current time, atr(t) is
an indicator function which has value 1 if the user is in location L at time t
and 0 otherwise, and 0 < r < 1 determines the rate of aging. We assume time
18 measured in days.

The set B of bases consists of a minimal set of locations that cover fraction p
of all (weighted) time:

thow
B = argmin {|B’| : Z time(L) > p/ rt“"“’_tdt},

B’QL LeB’ to

where 0 < p < 1 defines how large a proportion of the total (weighted) time the
bases must have.

In other words, bases are the minimal set of locations in which the user
spends proportion p of his total time, taking into account the weighting.

Giving priority to recent events could be accomplished in many ways. Our
exponential weight function can be approximated efficiently and incrementally,
and its smoothness means that there are no radical changes in the results with
advance of time (like there would be with a window with sharp edges).

The aging rate r is determined heuristically. Basically the aging should allow
regular events to show their regularity, and not assign overly great weights to
daily events. Probably most regular visits happen at least once a week, so a rate
that would allow two week old events to have reasonably high weights would
be appropriate. Reasonably high weights can be construed as rfrov—* being of
order 0.25 at t = t,ow — 14(days). This gives an estimate r = 0.9, which is used
throughout this paper.

The proportion p of total time has to be selected as well. We do not present
any analytical means here either, but will present some estimates based on our
test data in Sect. 4. Too high a proportion will allow purely transitional cells in
the set of bases. If too low a proportion is used, not all real significant locations
fit in. In our application model, where the user confirms bases by naming them,
the former case puts a higher burden on the user but is likely to lead to a more
useful set of bases.
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2.2 Routes and Areas

The user is not always at a base. Quite often when they are not, they are on

their way from one base to another. If we can determine where they are going,

this is useful as presence information. For adaptive (user-modelling) applications

the from-to base pair can be used as a state to characterize the current context.
The use of cell-based location data again presents some issues:

— We do not know the physical topology of the cells, instead we only know
about the times of cell changes.

— Cell changes do not only result from changes in locations, as interference
may bump the phone from one cell to another.

— We do not always observe the cell change in the same actual location when
moving in different directions. To minimize oscillation (and so network traf-
fic) there is some lag in changing cells to favor the current one.

The first characteristic defines to a large extent what we can infer from the
data, and prevents some analytical approaches. The two others make the data
fairly stochastic in nature. Our route learning and prediction algorithms are
based on sequences of cell transitions.

Routes taken by people may fork or pass by bases (this is typical of public
transport as well as main car routes). When travelling along a certain stretch
of a route it can be very hard for anyone to predict just from the movement
where the person will stop, or which fork they will take. To address a realistic
and useful problem, we will group bases into areas of nearby locations, and use
these to indicate the approximate direction of movement.

For an area to be a good indication of direction, the bases belonging to it have
to be physically close to each other. We do not know the physical (geographical)
topology, but we can approximate it with the travel times of the user. These times
are used as distance measures between bases, and the bases are then clustered
into areas with a density-based clustering algorithm similar to DBSCAN [5]. The
base graph represents the base topology.

Definition 5 (Base graph). The bases define a weighted, undirected graph
Gy = (B, E,w) where B is the set of bases, and where observed transitions
between bases define the edges E, i.e., if the user leaves base b; € B and without
visiting any other bases arrives at b; # b;, then there is an edge (b;,b;) in E.
The weight w(b;,b;) is given by the median of observed travel times between
b; and b; in the graph. The travel time starts when the user leaves the last cell
belonging to b; (bj) and ends when the user enters the first cell belonging to b;
(b;). The distance is calculated symmetrically using travels in both directions.

Median is favored because of its robustness in the face of outliers. Especially
large travel times that are not representative of the true distance are observed,
since the user does not always move continuously from one base to another, but
may stop on the way. A minimum would be too vulnerable to a single abnormal
transition. If the number of observations grows too large, the median can be
calculated approximately [6].
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We next define an area of density (travel time) ¢ as a set of bases where any
base can be reached from any other base in the area by recursively following
edges of weight at most t.

Definition 6 (Area). Given a base graph Gy = (B, E,w) and a density (travel
time) t, the areas (with respect to t) are the connected components of the undi-
rected, unweighted graph G = (B, E') where E' = {e € E | w(e) < t}.

We use a number of densities to obtain a hierarchy of areas. In practice we
use a three-level hierarchy, with travel times of t; = 3,t3 = 10 and t3 = 60
minutes. These densities are the only parameters to the area clustering. They
have been chosen to represent reasonable human perceptions of movement.

Ashbrook and Starner [4] utilize a similar method to group locations, but with
only a single layer. These are directly used in their route learning instead of the
individual locations. They have a physical topology underlying their location
data and have chosen a half mile radius as the threshold, which is (if walking)
slightly higher than our first level of ¢; = 3 minutes.

We can now formally define the route prediction problem using the concept
of areas.

Definition 7 (Route prediction problem). The input consists of the full his-
tory of cell transitions {(co,t0), ... ,(Cn,tnow) }, and a sequence {Ay,, ..., Ay}
of partitionings of bases to areas with time densities t; where Ayy = B (tg = —1)
and t; < t;11. Let the previous base visited by the user be b. The task is to output
the next base or area the user will visit: the prediction is an area a € A; with
mazimal i such that b ¢ a, and an estimated probability u for that prediction.

In other words, the task is to predict the roughest possible area that is
different from the previous one. The rationale for this is that making detailed
predictions for remote locations is not feasible, but identifying the direction is. In
practice, of course, the next base is often in the same area and will be predicted
as such. Table 1 illustrates how different kinds of predictions can be interpreted,
and how a presence service could describe the user’s location to others in various
circumstances.

Ashbrook and Starner [4] propose a route recognition model that builds a
Markov model of movement between important locations. This is not directly
applicable in our work, since we have much fewer bases than they have important
locations. The idea of using Markov chains, however, is relevant. The problem
of predicting short-term movement in cellular networks has been of interest in
systems that use paging. Bhattacharya and Das [7] propose a path learning
algorithm for cellular networks based on variable-order Markov chains. We use
similar ideas, but do not restrict ourselves to predicting just the next cell but
instead try to find the next base.

3 Algorithms

We next consider algorithms to solve the base and route learning problems
in a mobile device with limited resources. We assume the availability of 1-2
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Table 1. Description of current location in different cases

Analysis Example description

At base At Work

Not at base, prediction within area Left Work 15 minutes ago, heading
with high probability towards Itdkeskus

Not at base, prediction outside current Left Home 30 minutes ago, heading
area with high probability towards Parents/Jyvéskyla
center/Summer cottage

Not at base, prediction with low Left Work 10 minutes ago, possibly
probability heading towards Viikki sport center
Not at base, no prediction Left home 30 minutes ago

megabytes of memory and a peak processing power of 50-100 MIPS. This means
that we must store fairly compact statistics of the data and do quite straightfor-
ward online processing, and that we are willing to compromise some accuracy
in favor of computational efficiency. We also cannot use the available processing
power for long periods to avoid draining the battery of the mobile device.

These practical considerations and the requirement of using online algorithms
mean that some of the definitions in Sect. 2 cannot be used as is. In particular,
algorithms for detecting bases and building locations differ from the correspond-
ing definitions, because the algorithms have to make decisions online, without
having access to the full data.

3.1 Bases

The input arrives in cell transition events that contain the new cell identifier ¢
and a timestamp ¢. The goal is to be able to tell if a cell forms a base or a location,
or is part of an existing location. To do this online, we have the following per-
location state: time(L) is the total time spent in location L, and count(L) is the
number of visits to L. Cell transitions within a single location do not affect the
count. The average stay time is defined as avg_stay(L) = time(L)/count(L).
Let B be the set of bases. To update B when cell transition events oc-
cur we run algorithm BASEEVENT (Algorithm 1). This routine performs two
tasks. First, it updates location statistics (lines 2-4) to determine locations
that are visited often or where the user stays for long periods of time. These
two factors are combined (line 7) with a weight function that has the form
weight (count, time) = time - count?®/(count? 4+ 1). The dependence on count is
significant only when the count is small. This helps us ignore cells seen only a
few times, and has proved necessary in the implementation. Aging according to
Definition 4 is approximated outside this algorithm by multiplying each time(L)
by the scaling factor r once per day. Finally, the set B is rebuilt on lines 7
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BASEEVENT(c, t)

Input. A cell identifier ¢ and a timestamp ¢.

State. Set L of locations, associated statistics, set B C L of bases, previous event
{c',t', L'}, base weight threshold p.

L < the location containing c
time(L") + time(L') + (t — t)
if L # L' then
count(L") < count(L') + 1
MERGEEVENT(L',t — ') > Build locations
ot «—t; L+ L
total < 3 -, weight(count(x), time(x))
v <+ array of nodes = € L sorted into descending order by weight(x)
B < first k entries of v such that S°F | weight(v[i]) > p - total

Algorithm 1. Detecting bases from cell transition events.

to 9. Here the number of bases is determined by taking the proportion p of total
weight (cf. Definition 4).

The second task of BASEEVENT is to merge neighboring locations to cre-
ate new, larger locations, according to Definition 2. This is done using a greedy
approximation algorithm MERGEEVENT (Algorithm 2). It follows the most re-
cently seen cells and already formed locations. The history m has to have room
for enough items to support merging between u locations. It turns out that in
practice a large majority of mergings occurs between two existing locations, and
a few occur between three locations. Accordingly, the maximum size p of the
history was set to four. However, this does not mean that the algorithm cannot
produce larger locations. Instead of forming them in a single step, most locations
are built from a series of pairwise merges.

In most cases, once a location is formed, it is treated as if it were just a large
cell. The algorithm keeps several pieces of information about recent locations:
time(L) is the total time spent in location L while we have tracked it, maz_stay is
the longest single stay in the location, avg_stay is defined above, and count is the
number of times this location has been seen during merge tracking. Whenever we
see a new location (lines 7-16), we consider the previous locations for merging.
To be merged, we choose the smallest subset of recent locations that fulfills all
the required conditions (line 11).

Definitions 2 and 3 give conditions for clustering based on the average and
maximum times spent over all data. In the online algorithm, we make decisions
based on a single data point for the candidate cluster, since we cannot store
statistics for all possible groupings. That a single observation fulfills these con-
ditions is a required but not a sufficient condition for the full data. The additional
conditions on time spent and number of visits try to ensure that the data point
is not significantly unrepresentative of the full (unknown) distribution.
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MERGEEVENT(L, t)
Input. A location identifier L and a time t stayed in L.
State. List m of recent locations, with associated statistics; maximum size p of m.

1: if L = m; then > Same as the previous location
2:  Update time(m1) and maz_stay(m1)
3: else if L = m, for some ¢ > 1 then > Recently seen location
4:  Update time(m;), count(m;) and maz_stay(m;)
5:  Move m; to the front of the list m
6: else > Outside the set of tracked locations
7: k< 2;merged < false
8:  while k£ < |m| and not merged do
9: s {mi,...,mp}
10: T S time(s;)
11: if 7 > |s| max avg_stay(s;) and T > |s| max maz_stay(s;)
and 7 > 10 min and min count(s;) > 2
and some item in s is already a base
and graph formed by cells in s has diameter D < 2 then
12: Merge cells in s into a location
13: merged <— true
14: k+—k+1

15:  Remove the last entry of m, if |m| = p
16:  Add a new entry with {time = maz_stay = t, count = 1} to m

Algorithm 2. Building locations by merging existing locations.

3.2 Areas

We use a simple form of density clustering to build areas. Recall that only
bases are considered for area clustering. When we enter a base, we update the
base graph (Definition 5). The vertices of this graph are the bases, and the
(undirected) edges are the observed transitions between bases. Each edge carries
with it the average transition time, used as the simplest possible approximation
for the median.

Area clustering is performed once per day. The basic clustering step takes a
weighted graph Gy = (B, E,w) and a density threshold ¢. We start the search
at an arbitrary node b € B. Then we recursively follow all edges e € E where
the transition time w(e) < t. All the visited nodes are placed in the same area
cluster. If any nodes remain, we choose another node and start the search again
and build a new cluster. Nodes whose distance to any other node is larger than ¢
become singleton clusters.

3.3 Routes

Route prediction depends only on cell transitions. When transitions occur, we
store them in an event history H. This history contains pairs h; = (¢;, ¢;) of time
t; and cell ¢;.
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When the user arrives at a base b, the history is used to construct new
entries in the route prediction database as follows. We take sequences with a
window size k from the history. The first sequence would be s; = hy ... hy, then
comes So = ha...hgt1, and so on. We then store the associations s; — b in
the database. Later we can retrieve all the associations that correspond to a cell
identifier sequence ¢ ...c. Associations are stored repeatedly for decreasing
values of k£ until we reach k = 1. When searching for a match, we similarly use
progressively shorter sequences until a match is found. Typical initial values of
k are about 2 or 3. If K = 1, there is no history to tell about the direction of
movement; if k¥ > 4, most of the sequences we observe will be unique, making it
difficult to predict future actions.

We will also experiment with the possibility of using time of day to make more
specific predictions. For this purpose, we want to utilize the time distributions
of the last transition in the stored sequence s;. To be able to later reconstruct
the distribution of times, in addition to base b we store triplets (n, s, ¢), where
n is the number of occurrences of base b, and s is the sum and ¢ the square sum
of the event times.

Prediction of the next base is performed by Algorithm 3. The idea is to take
a sequence of recent events as a key and find all the bases stored in the database.
If a certain event sequence has led to more than one base, we need to choose the
base with the largest probability.

PREDICTBASE(H)
Input. A history H = (h1,... ,hn) of cell transition events.
Output. A pair (b,u) with a base b and its probability u, window size k.

1: t <= current time
2: for i + k downto 1 do
31 r < i most recent events in H
4: A« {associations © — (n, s, q,b) where x = r}
> s is the sum and g the square sum of n time values.

5. if A # () then

6: sum < w’ <=0 > Sum and the best weight w seen yet

7 for all (n,s,q,b) € A do

8: w4 s/n;o — \/q/n — p?

9: Assuming T' ~ N(p,0), let w <~ nPr(t —a <T <t+a)
10: if w > w’ then

11: ', w'") + (b,w)

12: sum $— sum + w

13: return (', w'/sum)

Algorithm 3. Predicting the next base.

There are two factors that influence the probability: the number of times
a base has been seen, and the time distribution. A certain base may be more
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probable in the morning than in the evening, or the user may have different
routes in the weekend than during the work week. These aspects are handled by
assuming that the event times follow a normal distribution. This is the simplest
possible assumption, as we only need to store the triplet (n,s,q) mentioned
above to recreate the distribution. However, experimental evaluation shows that
the effect of the time distribution is not as large as it might appear at first.

On line 9 we compute the probability of an association, given the current time
of day. Using n and the sums s and ¢ we reconstruct the distribution parameters
wand o. Then we find the probability of the range [t—«, t+«], where o = 30 min.
The day of the week can be handled similarly (omitted here). We obtain two
probabilities which are combined with the number of occurrences n. If the time
distribution is not used, line 9 can be simplified by setting the weight w equal
to n; it is also unnecessary to maintain the sums s and q.

As an alternative to the presented method we could also predict the next cell
instead of the next base. This corresponds to finding the stationary distribution
of a kth order Markov chain. This model is more expensive to evaluate and has
problems with inevitable loops in the transition graph.

Algorithm 3 yields an estimated probability u for the most likely next base.
We can distinguish unsure predictions, with small value of u, from more confident
ones. Given a threshold value u’, we say that the prediction is confident or has
high probability if u > u'. The final output of the prediction, a base or an area,
will be determined as in Definition 7 (see Table 1 for examples).

3.4 Limiting Memory Use

We attach a timestamp to each stored data item, be it a location with accu-
mulated time or a cell sequence. This timestamp is set to the current date and
time each time the information is updated. If we run out of resources (or reach a
predefined memory limit) we start to remove information starting from the old-
est items and continue until the desired level of memory usage is achieved. We
assume that there is enough memory to keep at least the “normal” day-to-day
schedule of the user in memory.

3.5 Possible Improvements

Bhattacharya and Das present an information-theoretical model for selecting
the order of Markov chains to use for each path [7]. This way they try to use
an optimal amount of information: if there is a long unique chain of cells in a
path, that chain is identified. This could be used in our algorithms as well. We
do not want to use too long sequences, though, since we are not really interested
in matching the total path travelled, only enough of the recent history to give
the direction of travel.

Cell transition sequences are fairly stochastic. For example we have observed
that a train trip has only sporadically exactly same sequences when the trip
is repeated. Since the sequences do not necessarily match exactly, our route
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matching is not always able to give good results. We should try to find a suitable
metric to define best matches between sequences of cells.

4 Experimental Evaluation

Evaluation of the location model is not straightforward. While the concepts
of bases and routes seem intuitively attractive and the clustering of cells and
bases is justified by the problem setting, the quantitative quality of the resulting
bases and areas is difficult to judge. The route learning has at least one possible
objective measure: the accuracy of the predictions based on route recognition.

4.1 Data Gathering

We have gathered cell transition data from three volunteers. The data has been
collected for six months with software that runs continuously on the mobile
phones the persons use normally (both at work and at leisure). Two of the
persons (1 and 2) have fairly simple movement patterns that mainly consist of
moving between home and work during the week and some weekend trips. The
third user moves somewhat more during the week and visits a larger number of
locations.

4.2 Locations and Bases

There are two aspects in judging the quality of the clustering of cells into loca-
tions: how well the definitions in Sect. 2.1 work and how well the online algo-
rithm approximates them. Both are somewhat subjective since we do not know
the “correct” clustering. Because in the data gathering cells have been named
according to the perceived locations, some idea of the quality is given by check-
ing whether the cells in a locations have the same name or not. By looking at
the data and the resulting locations, we can say that the original definitions give
quite good results. The online approximative version (Algorithm 1) is not too
far off. Mostly the problem with the online algorithm is with slightly too large
locations: very frequently visited locations tend to assimilate some neighbouring
cells as well. Less frequently visited locations are cleaner.

Table 2 shows the bases discovered for person 3. The proportion p (of total
time spent in the bases) used in these experiments was 0.8, yielding 37 bases.
The aging parameter r is fixed at 0.9 for all tests. The quality of the bases found
seems fairly good. Both the stable, recurring locations of everyday life (like work,
home, leisure, friends and family) are found, as well as more transient locations
on trips (like accomodation in different places). Only few of the bases found are
unclear. When p is raised to 0.85 the number of bases for this person grows to 86
and contains quite a few more unclear items.

Figure 1.A shows the number of bases found with different values of p. Larger
values potentially allow us to recognize the current location of the user more
often. If we assume that the user has to name the bases found, the larger the
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Table 2. Description of bases found for person 3

Home Work

Friends’ home Girlfriend’s home

Parents Girlfriend’s parents
Shopping center Vammala town center
Girlfriend’s summer cottage Student association house
Viitasaari accommodation Family firm office
Summer cottage Helsinki center west
Vammala town center 2 Helsinki center east
Vammala church (friends’ wedding) Viitasaari town center
Restaurant Accomodation in Porvoo
HIIT/ARU office Porvoo town center
Tvarminne conference center Sister’s home

Friend’s grandparents Friend’s home
Accomodation in Tartto, Estonia A student association
Restaurant Area near Helsinki center (unclear)

Accomodation in Uppsala, Sweden Restaurant in Uppsala
Restaurant in Stockholm, Sweden Unclear

Restaurant in Stockholm Previous work place
Unclear
A. No of bases found with different p B. No of bases to name
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Fig. 1. A: Effect of p on number of bases. B: Number of bases found per day for person
3 with p = 0.85

number of bases, the larger the cognitive load on the user. So the chosen p has
to balance these facts. Values between 0.8 and 0.9 seem to be reasonable. From
the quality of bases found 0.8 would seem best for these users, but 0.85 is not
unacceptable, although the data is by no means exhaustive. Adaptively finding
a suitable value would be an interesting research topic. When looking at the
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actual lists of bases, it seems that raising p over 0.85 starts to introduce a large
number of locations that do not have a clear meaning to the user in question.

Although the total number of bases the user has to name is important, so
is also the peak naming load. Figure 1.B shows the number of bases a user has
to name in a day within the data gathering period, with proportion p = 0.85.
The figure is for person 3, who has the highest number of bases. The naming
is distributed fairly evenly over the observation period, although there are some
peaks that would probably be annoying to the user.

4.3 Areas

The area clustering seems to work quite well. The first level of the area hierarchy
with density ¢t; = 3min picks up areas within towns or cities, the second level
(t2 = 10min) picks individual cities and the third level (3 = 60min) regions
of countries. For example with the bases of person 3, the first level areas have
grouped four districts of Helsinki into their own areas, as well as the town center
of Jyvéaskyld. The second level has grouped the bases in each town in Finland
into areas and the third level regions in Finland like Central Finland and the
area around Kuopio.

With areas the online algorithms directly implement Definition 6, with the
exception that areas are recalculated once a day. The quality of the area cluster-
ing depends only on how the approximation of cell clustering affects the selec-
tion of bases. The results with online and offline algorithms are almost identical
for p =0.8.

The next section shows that the use of areas improves the route recognition
results significantly.

4.4 Routes

We evaluate the route prediction by calculating the prediction after each cell
transition (unless the user arrives at a base) and by comparing the prediction
to the actual base that was reached next. The route learning is done online, so
that only data seen up to this point is used in the prediction. We test different
variations of the basic algorithms given in section 3 and different parameter
settings. The parameters r (aging) and ¢1, o, t3 (area densities) have been fixed in
these experiments to 0.9 and (3, 10, 60) minutes respectively. In the experiments
where p (proportion of total time for bases) or window size are not being varied,
values 0.85 and 2 have been used, respectively.

We leave out two cases from the evaluation: when the user is not moving
in a well-defined direction and when the next reached base has not been seen
before. We say that the user is not moving in a defined direction, if the most
recent history of n cells only contains k& < n unique cells. For the evaluation we
have selected after some experimentation n = 6 and k = 3. There is no clear
evaluation criteria for paths (bases) that have not been seen before, so these are
left out.
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Fig. 2. Route recognition accuracy with different variants of the method. The number
of predictions made is n.

Figure 2 shows how well different variations work. The following counts are
used in the graphs: Match is correctly predicted next base or area with high
confidence (the probability u estimated by Algorithm 3 is over 0.3), low correct
is correct prediction with low confidence. Low fail is incorrect prediction with low
confidence, no prediction means that there was no match for the current sequence
of cells, and fail is the count of wrong predictions. The methods are: Without
time is the version that produces the best results overall. It uses Algorithm 3
without the time distribution, and the area clustering for improving accuracy of
predictions. The other methods show the effects of varying the algorithm. The
first two methods, Next cell and Next base do not use areas. Next cell calculates
the probabilites of the next cell and repeats until a base is encountered (using
both sequence frequencies and the time distribution) and Next base directly
calculates the probability of the next base. The remaining methods all use “Next
base”. With areas uses the area clustering (as do the rest). Without time is the
same except that it uses only the sequence frequencies, and finally offiine bases
presents the results if we calculate both clustering of cells and bases with all
the data offline, before running the online route recognition. The impractical
offline version helps to evaluate the effect of of the approximations of the online
algorithms. The number of predictions n is the same for all the online versions,
but lower for the offline variant because the cell clustering is different.

The route prediction results justify the use of the area clustering; it raises the
accuracy significantly. It is interesting that using time-of-day affects the results
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minimally, and not necessarily to the better. This is probably due to assuming
a single-mode Gaussian distribution, which is not always true for the data. The
last method shown that uses precalculated cell clusters and bases shows that
the online approximation is not quite optimal, but it is not too far off either.
Calculating next cells instead of bases is not justified, because in addition to
being much more expensive computationally, it gives worse prediction results.
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Fig. 3. Route recognition accuracy with varying window size

4.5 Selecting Parameters

Figure 3 shows the effect of the window size k on the route recognition accu-
racy. The method used is “Without time”. Figure 3.A shows the ratio of correct
predictions made (both low and high confidence) against all predictions, Fig 3.B
the ratio for predictions made with high confidence (estimated probability over
0.3). Lenghtening the window increases the average accuracy of the predictions
slightly, but the fact that the longest matches are used results in higher confi-
dences for false predictions as well. Elsewhere in this evaluation we have used
window size k = 2 as it seems to give the best overall results.

That the prediction accuracy decreases when the window size is increased
(especially the for the predictions with high probability) may seem contradictory.
The effect is due to overfitting: Algorithm 3 finds the longest possible matching
sequence, and assigns probabilities to only sequences of that length. Using all
possible matches, but assigning lower weights to shorter matches, could be a
useful compromise.

The choice of the proportion p affects both the quality of the bases and
the accuracy of the route recognition. Figure 4 shows the effect on prediction
accuracy. It seems that to reach prediction accuracy above 0.5, which can be
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seen as a very rudimentary baseline (that we are correct more often than not),
p should be set to 0.85 for our three test persons. However, the accuracy seems
to behave in a rather non-monotonic way as a function of p.

5 Conclusions and Future Work

We have presented methods for learning significant locations—bases, areas of
nearby bases, and routes between bases from cell transition data. The methods
work on a mobile device, reducing privacy issues in the analysis of the data.
No new infrastructure or expensive sensors are needed for this kind of location
analysis. The results indicate that with some user interaction we can provide
interesting presence information from cell-based location data.

The accuracy of the inferred location is limited both by the data and our
methods. The impact of this depends on the application. For adaptive applica-
tions our framework can be seen as a feature-extraction layer, whose accuracy
could be improved using other available data, e.g., from sensors. In presence ser-
vices, humans seem to be able to augment the location information with other
presence data and background knowledge. For example, if the location given by
the presence system for Bob is “At home”, Alice may infer with fairly high con-
fidence that Bob is on free time at the moment, and either at home or near his
home.

The route prediction algorithms presented give adequate results for some
applications, but could be improved upon. The algorithms presented use exact
substring matching. To improve the recognition accurary we plan to look into
string matching techniques that are more suitable for this kind of stochastic
data.

Some of the accuracy problems mentioned above have to do with the nature
of the GSM cells. Since cells are large, a single cell may contain several significant
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locations, and often extend to the area surrounding a location. Identifying the
individual locations within a single cell cannot be done from the GSM cell data
alone. Using the same methods on networks with smaller cell-size, like Wi-Fi
and UMTS, would enable us to delineate bases more accurately and add detail
to routes. As a preliminary step in this direction we plan to gather data which
includes neighbouring GSM cells, so reducing the size of cells to intersections of
cells.

Probably the most natural alternative to cell-based locationing would be
GPS, but it is not without problems either. GPS is not widely available in
mobile devices. Further, GPS signal disappears in large parts of urban areas due
to the buildings shadowing the signal. Finally, coordinate-based data has the
same problem of identifying locations and routes that are useful in personally
meaningful location-awareness.
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