Privacy in ubiquitous computing

Lots of questions, a couple of answers

Mika Raento

mika.raento@cs.helsinki.fi

Helsinki Institute for Information Technology – Basic Research Unit

Introduction

What is privacy?

- Bodily (body searches)
- Territorial (home)
- Communication
- Information

Themes – applications

- Presence services
- User modelling
- So wanting to collect either for distribution to others or analysis

Themes – constraints

- User attitudes/needs
- User behaviour
- Legislation

Privacy principles

Marc Langheinrich, Privacy by Design Principles of Privacy-Aware Ubiquitous Systems, Ubicomp 2001 Proceedings

- Openness and transparency: subject aware
- Individual participation: subject can see and modify records
- Collection limitation: not excessive for purpose
- Data quality: relevant, correct and up-to-date

Privacy principles

continued...

- Use limitation: only for stated purposes, access controls
- Reasonable security: relative to data collected
- Accountability: subject able to verify compliance

Reflected in EU and US legislation.

Issues in ubicomp

Openness and transparency

- Systems are supposed to be invisible
- How can the user be aware of when data is being collected, and what data
- Legal issues: getting consent for all collection
- User issues: how can we enable the user to have an accurate mental model of the systems' working

Individual participation

- System cannot function as a black box
- What about inferred data: models, predictions
- How can the user correct a model built by the system?

Collection limitation

- We want to build systems that (maybe) use as much data as possible, without necessarily knowing how relevant attributes are
- Good motivation for finding out relevance of e.g. presence information attributes!
- What about length of history stored?

Data quality

How do we show that inferred data or models are accurate?

Use limitation

How do individuals give permission to distribute data to others?

Legally and practically

Reasonable security

- Maybe 'reasonable' doesn't have to be very much in a research setting
- If a presence service distributes data to other general-purpose computers there is no way of limiting where that data ends up

Users

User preferences vs. behaviour

Spiekermann, Grossklags, Berendt (2001) Stated Privacy Preferences versus Actual Behaviour in EC environments: a Reality Check, Proc 5th Int Conf Wirtschaftsinformatik

- 75% of people studied were concerned about their privacy or commercial profiling (30% 'privacy fundamentalists')
- 87% of participants disclosed large amounts of private information in exchange for uncertain, smallish financial gains
- The exact numbers aren't necessarily interesting, but the study shows that people do not act according to their stated preferences

User preferences vs. behaviour

- Affects suitability of research methods
- True/well simulated situations essential to measurements
- Even if users aren't necessarily really interested in their privacy:
- real risks of damage exist, and systems that do not protect from this adequately are not useful
- does not free us from legislative constraints

Getting those preferences

- Much research in specification of privacy preferences in e.g. data collection or presence services
- Not extremely intresting, we may well assume that arbitrarily complex systems can be generated that allow any kinds of rules necessary
- The interesting problem is: how can we get the users to set these preferences so that they maximize (benefit-damage)

Getting those preferences

Leysia Palen (1999), Social, individual and technological issues for groupware calendar systems

- Well-established in HCI that users don't change default settings
- Holds even for (at least some) private information (calendars)
- Users can find preference settings too difficult or not rewarding enough
- How to 'fix' both? Can we? How to study this?

Getting those preferences

- Can we build a framework wherein we can reason about the power of the preference system in relation to complexity of configuration? (BRU?)
- How much effort are users willing to expend? Initially? Per recipient of presence information? Per situation? (ARU?)
- How much information do we need to guard from damage?

How much privacy do we need?

Feasibility

Following four slides based on Langheinrich (2001)

- Scott McNealy: 'You already have zero privacy anyway, get over it.'
- Can we build systems that can *enforce* privacy? (security, use restrictions, accountability)

Convenience

- Or cost vs benefit
- Free flow of information can enable us to build better personalized, proactive systems
- Protect only highly sensitive data?
- Research issues: how much is there to gain? how much is there to lose?

Communitarian

- Society as a whole can benefit from less privacy (e.g. lessen criminality)
- Can be smaller social groups (families, workplaces) as well: more honesty?
- Huge risks? Big-brother/Nazi -like societies
- Large differences in attitudes between Europe/US

Egalitarian

- No watchers and watched, you know as much about anybody else as they know about you
- New forms of social interaction based on egalitarian knowledge
- What about legitimate power structures? (e.g. families) Do such exist :-) ?
- Maybe privacy controls can be based on reciprocality (and have been based on)

User modelling

Hypothesis

- Proactive systems anticipate users' needs
- Need personalized/learning/predictive models
- Not necessarily true?
- But assume it for now

Per-user modelling

- Maybe we can have the user store and analyze the data on a device controlled by them, so no issues
- But if the model is to be used *ubiquitously* it has to be transmitted to other devices/systems
- How sensitive is the model?
- Can the model be applied to data (so don't distribute, answer queries instead) without giving the secrets away?
- Probably not

Central modelling

- Learning from groups of people can lead to much better results
- Recommender systems good example
- Cryptographic protocols exist that allow secure multi-party computing of any reasonable functions
- Assume e.g. that 50% of users are available when analysing and that 2/3 are honest
- But only the global model is known afterwards, not individual data
- Research area: privacy-preserving data mining (BRU)

Some conclusions

From ideal/user perspective

- Build systems and data collection that the users can understand and give permission for
- Distribute data only to entities the users trust/are willing to give the information to (can be situation-specific)
- Make the setting up of trust relations easy enough for users
- Make the system compelling enough so that the users are willing to configure it
- Plenty of interesting and hard problems

Note

- The following statements are deliberately harsh
- maybe we can come up with solutions?

From regulative viewpoint

- We cannot guarantee access control or security for presence data in a contractual sense (trust is not contractual) (at least without trusted computing)
- We cannot describe the contents of user models or let users correct them (?)
- We cannot get user consent explicitly for each observation
- So we are not allowed to collect/distribute data that can be connected to individuals => pseudonymity or anonymity needed

From regulative viewpoint

- If anonymity or pseudonymity can be guaranteed, we are allowed to collect data
- Presence services are not possible with anonymity, pseudonymity needed: server doesn't know users' real identities, users can tell their pseudonyms to others themselves
- For ubiquitous/proactive services the user is often physically identifiable when using the system and so pseudonymity can be compromised
- Also if we collect much everyday data, the user may be identifiable from the data (e.g. locations)

Finally

Our ethics

Personally, I:

- Would probably be willing to tell quite a lot about myself to friends and family
- Don't like the idea of trusted computing, even if it would allow us to distribute sensitive data
- Think that current legislation should in no case be relaxed
- Wouldn't necessarily consider it harmful if people would have to be more honest about their activities

What about you?