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What This Tutorial is About

Maximum Satisfiability—MaxSat
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)
solving

▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:
especially suited for inherently “very Boolean” optimization
problems
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Tutorial Outline
Motivation and Basic Concepts
Exact Optimization
Benefits of MaxSat
MaxSat: Basic Definitions
MaxSat Solvers: Input Format, Evaluations, and Availability

Algorithms for MaxSat Solving
Branch and Bound
MaxSat by Integer Programming
SAT-Based MaxSat Solving

Iterative Search
Core-based Approaches

SAT-IP Hybrid Algorithms for MaxSat
Iterative Use of SAT Solvers for MaxSat

Modelling and Applications
Representing High-Level Soft Constraints in MaxSat
MaxSat-based Cost-optimal Correlation Clustering
Heuristics for Planning using MaxSat
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Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:

Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions
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Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:

Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions
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SAT Solvers

From 100 variables, 200 constraints (early 90s)
up to >10,000,000 vars. and >50,000,000 clauses. in 20 years.
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Core NP search procedures for solving various types of
computational problems

Exact Optimization
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SAT Solvers

From 100 variables, 200 constraints (early 90s)
up to >10,000,000 vars. and >50,000,000 clauses. in 20 years.
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Exact Optimization
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Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/...to a goal state

▶ Planning, model checking, ...

▶ Find a smallest explanation
▶ Debugging, configuration, ...

▶ Find a least resource-consuming schedule
▶ Scheduling, logistics, ...

▶ Find a most probable explanation (MAP)
▶ Probabilistic inference, ...

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
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Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/...to a goal state

▶ Planning, model checking, ...

▶ Find a smallest explanation
▶ Debugging, configuration, ...

▶ Find a least resource-consuming schedule
▶ Scheduling, logistics, ...

▶ Find a most probable explanation (MAP)
▶ Probabilistic inference, ...

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
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Importance of Exact Optimization

Giving Up?
“The problem is NP-hard, so let’s develop
heuristics / approximation algorithms.”

No!
Benefits of provably optimal solutions:
▶ Resource savings

▶ Money
▶ Human resources
▶ Time

▶ Accuracy
▶ Better approximations

▶ by optimally solving simplified problem
representations

$$$

vs

Key Challenge: Scalability
Exactly solving instances of NP-hard optimization problems
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Importance of Exact Optimization

Giving Up?
“The problem is NP-hard, so let’s develop
heuristics / approximation algorithms.”

No!
Benefits of provably optimal solutions:
▶ Resource savings

▶ Money
▶ Human resources
▶ Time

▶ Accuracy
▶ Better approximations

▶ by optimally solving simplified problem
representations

$$$

vs

Key Challenge: Scalability
Exactly solving instances of NP-hard optimization problems
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Constrained Optimization
Declarative approaches to exact optimization

Model + Solve
1. Modeling:
represent the problem declarative in a constraint language

so that optimal solutions to the constraint model corresponds to
optimal solutions of your problem

2. Solving:
use an generic, exact solver for the constraint language

to obtain, for any instance of your problem, an optimal solution
to the instance

Important aspects
▶ Which constraint language to choose — application-specific
▶ How to model the problem compactly & “well” (for the solver)
▶ Which constraint optimization solver to choose
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Constrained Optimization
Declarative approaches to exact optimization

Model + Solve
1. Modeling:
represent the problem declarative in a constraint language

so that optimal solutions to the constraint model corresponds to
optimal solutions of your problem

2. Solving:
use an generic, exact solver for the constraint language

to obtain, for any instance of your problem, an optimal solution
to the instance

Important aspects
▶ Which constraint language to choose — application-specific
▶ How to model the problem compactly & “well” (for the solver)
▶ Which constraint optimization solver to choose
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Constrained Optimization Paradigms
Mixed Integer-Linear Programming MIP, ILP
▶ Constraint language:
Conjunctions of linear inequalities

∑k
i=1 cixi

▶ Algorithms: e.g. Branch-and-cut w/Simplex
Finite-domain Constraint Optimization COP
▶ Constraint language:
Conjunctions of high-level (global) finite-domain constraints

▶ Algorithms:
Depth-first backtracking search, specialized filtering
algorithms

Maximum satisfiability MaxSat
▶ Constraint language:
weighted Boolean combinations of binary variables

▶ Algorithms: building on state-of-the-art CDCL SAT solvers
▶ Learning from conflicts, conflict-driven search
▶ Incremental API, providing explanations for unsatisfiability
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MaxSat Applications

probabilistic inference [Park, 2002]
design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]

[Chen, Safarpour, Marques-Silva, and Veneris, 2010]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]

[Ignatiev, Janota, and Marques-Silva, 2014]
Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]
optimal covering arrays [Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Järvisalo, 2016]
...
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MaxSat Applications
Central to the increasing success:
Advances in MaxSat solver technology

probabilistic inference [Park, 2002]
design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]

[Chen, Safarpour, Marques-Silva, and Veneris, 2010]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]

[Ignatiev, Janota, and Marques-Silva, 2014]
Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]
optimal covering arrays [Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Järvisalo, 2016]
...
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Benefits of MaxSat
Provably optimal solutions

Example: Correlation clustering by MaxSat
[Berg and Järvisalo, 2016]
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▶ Improved solution costs over approximative algorithms
▶ Good performance even on sparse data (missing values)
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Benefits of MaxSat

Surpassing the efficiency of specialized algorithms

Example:
Learning optimal bounded-treewidth Bayesian networks

[Berg, Järvisalo, and Malone, 2014]

MaxSat vs Dynamic Programming and MIP
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Basic Concepts
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MaxSat: Basic Definitions

▶ Simple constraint language:
conjunctive normal form (CNF) propositional formulas

▶ More high-level constraints encoded as sets of clauses

▶ Literal: a boolean variable x or ¬x.
▶ Clause C: a disjunction (∨) of literals. e.g (x ∨ y ∨ ¬z)
▶ Truth assignment τ : a function from Boolean variables to

{0, 1}.
▶ τ(C) = 1 if

τ(x) = 1 for a literal x ∈ C,
τ(x) = 0 for a literal ¬x ∈ C.

At least one literal of C is made true by τ .
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MaxSat: Basic Definitions

MaxSat
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of
clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modeling practical problems.
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Central Generalizations of MaxSat

Weighted MaxSat

▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied
clauses: τ s.t.

∑
C∈F

wcτ(C) is maximized.

Partial MaxSat
▶ Some clauses are deemed hard—infinite weights

▶ Any solution has to satisfy the hard clauses
⇝ Existence of solutions not guaranteed

▶ Clauses with finite weight are soft

Weighted Partial MaxSat
Hard clauses (partial) + weights on soft clauses (weighted)
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MaxSat: Example

Shortest Path
Find shortest path in a grid with horizontal/vertical moves.
Travel from S to G.
Cannot enter blocked squares.

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m
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MaxSat: Example

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSat encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:
In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”
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MaxSat: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSat encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:
In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”
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MaxSat: Example

S

G

a

c
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m

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSat encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:
In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”
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MaxSat: Example

▶ The previous clauses minimize the number of visited squares.
▶ ...however, their MaxSat solution will only visit S and G!
▶ Need to force the existence of a path between S and G by
additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited
neighbour

▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours

▶ One predecessor and one successor on the
path

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m
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MaxSat: Example

▶ The previous clauses minimize the number of visited squares.
▶ ...however, their MaxSat solution will only visit S and G!
▶ Need to force the existence of a path between S and G by
additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited
neighbour

▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours

▶ One predecessor and one successor on the
path
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MaxSat: Example
Constraint 1:
S and G must have exactly one visited neighbour.

▶ For S: a+ b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q+ r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise
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MaxSat: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a+ b = 1
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MaxSat: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a+ b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
▶ For G: k + q+ r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise
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MaxSat: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e→ (d + j + l+ f = 2)

▶ Requires encoding the cardinality constraint d + j + l+ f = 2
in CNF

Encoding Cardinality Constraints in CNF

▶ An important class of constraints, occur
frequently in real-world problems

▶ A lot of work on CNF encodings of
cardinality constraints
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MaxSat: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e→ (d + j + l+ f = 2)

▶ Requires encoding the cardinality constraint d + j + l+ f = 2
in CNF

Encoding Cardinality Constraints in CNF

▶ An important class of constraints, occur
frequently in real-world problems

▶ A lot of work on CNF encodings of
cardinality constraints S
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MaxSat: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

Properties of the encoding

▶ Every solution to the hard clauses is a
path from S to G that does not pass a
blocked square.

▶ Such a path will falsify one negative soft
clause for every square it passes through.

▶ orange path: assign 14 variables in
{S, a, c, h, . . . , t, r,G} to true

▶ MaxSat solutions:
paths that pas through a minimum
number of squares (i.e., is shortest).

▶ green path: assign 8 variables in
{S, b, g, f , . . . , k,G} to true
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MaxSat: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete

▶ The class of binary relations f (x, y) where given x we can
compute y in polynomial time with access to an NP oracle

▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSat is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MaxSat: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete

▶ The class of binary relations f (x, y) where given x we can
compute y in polynomial time with access to an NP oracle

▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSat is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).
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MaxSat: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete

▶ The class of binary relations f (x, y) where given x we can
compute y in polynomial time with access to an NP oracle

▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSat is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).
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Standard Solver Input Format: DIMACS WCNF
▶ Variables indexed from 1 to n
▶ Negation: -

▶ -3 stand for ¬x3
▶ 0: special end-of-line character
▶ One special header “p”-line:

p wcnf <#vars> <#clauses> <top>
▶ #vars: number of variables n
▶ #clauses: number of clauses
▶ top: “weight” of hard clauses.

▶ Any number larger than
the sum of soft clause weights
can be used.

▶ Clauses represented as lists of integers
▶ Weight is the first number
▶ (−x3 ∨ x1 ∨ ¬x45), weight 2:
2 -3 1 -45 0

▶ Clause is hard if weight == top

Example:
mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
.. . truncated 2.4 MB
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MaxSat Evaluations
Objectives

▶ Assessing the state of the art in the field of Max-SAT solvers
▶ Creating a collection of publicly available Max-SAT
benchmark instances

▶ Tens of solvers from various research groups internationally
participate each year

▶ Standard input format

11th MaxSat Evaluation
http://maxsat.ia.udl.cat

Affiliated with SAT 2016:
19th Int’l Conference on Theory and
Applications of Satisfiability Testing

http://maxsat.ia.udl.cat


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution, or
UNSATISFIABLE

▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
. . . truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses
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Push-Button Solver Technology

Example: $ openwbo mancoosi-test-i2000d0u98-26.wcnf

c Open-WBO: a Modular MaxSAT Solver
c Version: 1.3.1 – 18 February 2015
...
c — Problem Type: Weighted
c —Number of variables: 18169
c —Number of hard clauses: 94365
c —Number of soft clauses: 18267
c — Parse time: 0.02 s
...
o 10548793370
c LB : 15026590
c Relaxed soft clauses 2 / 18267
c LB : 30053180
c Relaxed soft clauses 3 / 18267
c LB : 45079770
c Relaxed soft clauses 5 / 18267
c LB : 60106360

...
c Relaxed soft clauses 726 / 18267
c LB : 287486453
c Relaxed soft clauses 728 / 18267
o 287486453
c Total time: 1.30 s
c Nb SAT calls: 4
c Nb UNSAT calls: 841
s OPTIMUM FOUND
v 1 -2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16 ...
... -18167 -18168 -18169 -18170
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Progress in MaxSat Solver Performance

Comparing some of the best solvers from 2010–2014:
In 2014: 50% more instances solved than in 2010!
▶ On same computer, same set of benchmarks:
Weighted Partial MaxSat encodings of “industrial”
optimization problems
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Some Recent MaxSAT Solvers

Open-source:
▶ OpenWBO http://sat.inesc-id.pt/open-wbo/

▶ MaxHS http://maxhs.org

▶ LMHS http://www.cs.helsinki.fi/group/coreo/lmhs/

Binaries available:
▶ Eva http://www.maxsat.udl.cat/14/solvers/eva500a__

▶ MaxSatz http://home.mis.u-picardie.fr/˜cli/EnglishPage.html

▶ MSCG http://sat.inesc-id.pt/˜aign/soft/

▶ WPM3 http://web.udl.es/usuaris/q4374304/#software

▶ QMaxSAT https://sites.google.com/site/qmaxsat/

▶ ...see evaluation web site
http://www.maxsat.udl.cat/15/solvers for links to other solvers

http://sat.inesc-id.pt/open-wbo/
http://maxhs.org
http://www.cs.helsinki.fi/group/coreo/lmhs/
http://www.maxsat.udl.cat/14/solvers/eva500a__
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://sat.inesc-id.pt/~aign/soft/
http://web.udl.es/usuaris/q4374304/#software
https://sites.google.com/site/qmaxsat/
http://www.maxsat.udl.cat/15/solvers


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Algorithms for MaxSat
Solving
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A Variety of Approaches

▶ Branch-and-bound
▶ Integer Programming (IP)
▶ SAT-Based Algorithms

▶ Iterative / “model-based”
▶ Core-based

▶ Implicit hitting set algorithms (IP/SAT hybrid).
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Examples of Recent MaxSAT Solvers by Category

Branch-and-bound:
▶ MaxSatz

http://home.mis.u-picardie.fr/˜cli/EnglishPage.html
▶ ahmaxsat

http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html
Iterative, model-based:
▶ QMaxSAT https://sites.google.com/site/qmaxsat/

Core-based:
▶ Eva http://www.maxsat.udl.cat/14/solvers/eva500a__
▶ MSCG http://sat.inesc-id.pt/˜aign/soft/
▶ OpenWBO http://sat.inesc-id.pt/open-wbo/
▶ WPM http://web.udl.es/usuaris/q4374304/#software
▶ maxino http://alviano.net/software/maxino/

IP-SAT Hybrids:
▶ MaxHS http://maxhs.org
▶ LMHS http://www.cs.helsinki.fi/group/coreo/lmhs/

http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html
https://sites.google.com/site/qmaxsat/
http://www.maxsat.udl.cat/14/solvers/eva500a__
http://sat.inesc-id.pt/~aign/soft/
http://sat.inesc-id.pt/open-wbo/
http://web.udl.es/usuaris/q4374304/#software
http://alviano.net/software/maxino/
http://maxhs.org
http://www.cs.helsinki.fi/group/coreo/lmhs/
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Some Additional Notation

▶ A MaxSat CNF Φ has hard and soft clauses:
ci ∈ Φ : cost(ci) is weight
cost(ci) < ∞ soft clause cost(ci) = ∞ hard clause

▶ Truth assignment π
cost(π) is sum of the weights of clauses falsified by π.

▶ π satisfies al hard clauses: it is a solution.
▶ cost(π) is minimum over all solutions: it is an optimal
solution.

▶ MaxSat algorithms often cast as minimization problem: find
solution with minimum cost (optimal).
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Branch and Bound
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Branch and Bound

v3

n

mincost(n)

¬v2

Φ

¬v1
▶ UB = cost of the best solution so far.
▶ mincost(n) = minimum cost achievable
under node n

▶ Backtrack from n when we know
mincost(n) ≥ UB
(no solution under n is better).

▶ Our goal: calculate a lower bound LB s.t.
mincost(n) ≥ LB.

▶ If LB ≥ UB then mincost(n) ≥ LB ≥ UB and
we can backtrack.
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Lower Bounds

Common LB technique in MaxSat solvers: look for inconsistencies
that force some soft clause to be falsified.

Φ = ... ∧ (x, 2)... ∧ (¬x, 3)...
Ignoring clause costs, κ = {(x) ∧ (¬x)} is inconsistent.

Let κ′ = {(□, 2) ∧ (¬x, 1)}.
Then κ′ is MaxSat-equivalent to κ: the cost of each truth
assignment is preserved. (□ is empty clause)

Let Φ′ = Φ− κ ∪ κ′.
Then Φ′ is MaxSat-equivalent to Φ, and the cost of □ has been
incremented by 2
Cost of □ must be incurred: it is an LB
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Lower Bounds

Common LB technique in MaxSat solvers: look for inconsistencies
that force some soft clause to be falsified.

Φ = ... ∧ (x, 2)... ∧ (¬x, 3)...
Ignoring clause costs, κ = {(x) ∧ (¬x)} is inconsistent.

Let κ′ = {(□, 2) ∧ (¬x, 1)}.
Then κ′ is MaxSat-equivalent to κ: the cost of each truth
assignment is preserved. (□ is empty clause)

Let Φ′ = Φ− κ ∪ κ′.
Then Φ′ is MaxSat-equivalent to Φ, and the cost of □ has been
incremented by 2
Cost of □ must be incurred: it is an LB
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Lower Bounds

Common LB technique in MaxSat solvers: look for inconsistencies
that force some soft clause to be falsified.

Φ = ... ∧ (x, 2)... ∧ (¬x, 3)...
Ignoring clause costs, κ = {(x) ∧ (¬x)} is inconsistent.

Let κ′ = {(□, 2) ∧ (¬x, 1)}.
Then κ′ is MaxSat-equivalent to κ: the cost of each truth
assignment is preserved. (□ is empty clause)

Let Φ′ = Φ− κ ∪ κ′.
Then Φ′ is MaxSat-equivalent to Φ, and the cost of □ has been
incremented by 2
Cost of □ must be incurred: it is an LB
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Lower Bounds

Common LB technique in MaxSat solvers: look for inconsistencies
that force some soft clause to be falsified.

Φ = ... ∧ (x, 2)... ∧ (¬x, 3)...
Ignoring clause costs, κ = {(x) ∧ (¬x)} is inconsistent.

Let κ′ = {(□, 2) ∧ (¬x, 1)}.
Then κ′ is MaxSat-equivalent to κ: the cost of each truth
assignment is preserved. (□ is empty clause)

Let Φ′ = Φ− κ ∪ κ′.
Then Φ′ is MaxSat-equivalent to Φ, and the cost of □ has been
incremented by 2
Cost of □ must be incurred: it is an LB
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Lower Bounds

1. Detect an inconsistent subset κ (aka core) of the current
formula

▶ e.g. κ = {(x, 2) ∧ (¬x, 3)}
2. Apply sound transformation to the clauses in κ that result in
an increment to the cost of the empty clause □

▶ e.g. κ replaced by κ′ = {(□, 2) ∧ (¬x, 1)}
▶ This replacement increases cost of □ by 2.

3. Repeat 1 and 2 until no further increment to the LB is
possible (or LB ≥ UB)
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Fast detection of some Cores

Treat the soft clauses as if they were hard and then:
▶ Run Unit Propagation (UP). If UP falsifies a clause we can find
a core.
On {(x, 2), (¬x, 3)} UP yields false clause.

▶ The false clause and the clauses that generated it form a
core.

▶ This can find inconsistent sub-formulas quickly
But only limited set of inconsistent sub-formulas.
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Transforming the Formula

▶ Various sound transformations of cores into increments of
the empty clause have been identified.

▶ MaxRes generalizes this to provide a sound and complete
inference rule for MaxSat

[Larrosa and Heras, 2005]

[Bonet, Levy, and Manyà, 2007]
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MaxRes

▶ MaxRes is a rule of inference that like ordinary resolution
takes as input two clauses and produces new clauses.

▶ Unlike resolution MaxRes (a) removes the input clauses and
(b) produces multiple new clauses.
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MaxRes

MaxRes [(x ∨ a1 ∨ . . . ∨ as ∨ w1), (¬x ∨ b1 ∨ . . . ∨ bt,w2)] =

(a1 ∨ · · · ∨ as · · · b1 ∨ · · · ∨ bt,min(w1,w2)) Regular Resolvent
(x ∨ a1 ∨ · · · ∨ as,w1 −min(w1,w2)) Cost Reduced Input
(¬x ∨ b1 ∨ · · · ∨ bt,w2 −min(w1,w2)) One will vanish
(x ∨ a1 ∨ · · · ∨ as ∨ ¬(b1 ∨ · · · ∨ bt),min(w1,w2)) Compensation Clauses
(¬x ∨ ¬(a1 ∨ · · · ∨ as) ∨ b1 ∨ · · · ∨ bt,min(w1,w2)) must be converted to Clauses

[Larrosa and Heras, 2005; Bonet, Levy, and Manyà, 2007]
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MaxRes

▶ By adding the “compensation” clauses MaxRes preserves the
cost of every truth assignment.

▶ Bonet et al. give a directly clausal version and a systematic
way of using MaxRes to derive the empty clause (□,Opt)
with weight Opt equal to the optimal cost.

[Bonet, Levy, and Manyà, 2007]
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Other Lower Bounding Techniques

▶ Falsified soft learnt clauses and hitting sets over their proofs
[Davies, Cho, and Bacchus, 2010]

▶ Clone is an approach that used a relaxation of the MaxSat
formula.

[Pipatsrisawat, Palyan, Chavira, Choi, and Darwiche, 2008]

▶ The relaxation provides a LB at each node.
▶ Other relaxations including minibuckets, or width-restricted
BDDs might be applied.

[Dechter and Rish, 2003]

[Bergman, Ciré, van Hoeve, and Yunes, 2014]
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Branch and Bound Summary

▶ Can be effective on small combinatorially hard problems,
e.g., maxclique in a graph.

▶ Once the number of variables gets to 1,000 or more it is less
effective: LB techniques become weak or too expensive.
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MaxSat by Integer Programming (IP)
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Solving MaxSat with an IP Solver

▶ Optimization problems studied for decades in operations
research (OR).

▶ Integer Program (IP) Solvers are common optimization tool
for OR. E.g., IBM’s CPLEX.

▶ IP solvers solve problems with linear constraints and
objective function where some variables are integers.

▶ State-of-the-art IP solvers very powerful and effective: can
use this tool for MaxSat as well.
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Blocking Variables (Relaxation Variables)

MaxSat solving uses technique of blocking variables to relax
(block) soft clauses (selector variables).
▶ To a soft clause (x1 ∨ x2 ∨ · · · ∨ xk) we add a new variable b:

(b ∨ x1 ∨ x2 ∨ · · · ∨ xk)

b does not appear anywhere else in the formula.
▶ If we make b true the soft clause is automatically satisfied (is
relaxed/is blocked).

▶ If we make b false the clause becomes hard and must be
satisfied.
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MaxSat encoding into IP

▶ To every soft clause ci add a new “blocking” variable bi .

(x ∨ ¬y ∨ z ∨ ¬w) ⇒ (b1 ∨ x ∨ ¬y ∨ z ∨ ¬w)

▶ Convert every augmented clause into a linear constraint:

bi + x + (1− y) + z + (1− w) ≥ 1

▶ Each variable is integer in the range [0− 1].
▶ Finally add the objective function

minimize
∑
i

bi ∗ cost(ci)
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Integer Programming Summary

▶ IP solvers use Branch and Cut to solve.
▶ Compute a series of linear relaxations and cuts (new linear
constraints that cut off non-integral solutions).

▶ Sometimes branch on a bound for an integer variable.
▶ Also use many other techniques.

▶ Effective on many standard optimization problems, e.g.,
vertex cover.

▶ But for problems where there are many boolean constraints
IP is not as effective.
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SAT-Based MaxSat Solving
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SAT-Based MaxSat Solving

▶ Solve a sequence or SAT instances where each instance
encodes a decision problem of the form

“Is there a truth assignment of falsifying at most weight k soft
clauses?”

for different values of k.

▶ SAT based MaxSat algorithms mainly do two things
1. Develop better ways to encode this decision problem.
2. Find ways to exploit information obtained from the SAT
solver at each stage in the next stage.

Assume unit weight soft clauses for now
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SAT-Based MaxSat: Basic Framework

Basic Framework (UNSAT⇒ SAT). We successively relax the
MaxSat formula allowing more and more soft clauses to be
falsified.

1. Verify that the set of hard clauses are SAT
If UNSAT STOP. There are no MaxSat solutions!

2. Else: Repeat until Φ is SAT
2.1 Try to SAT solve Φ.
2.2 If SAT STOP found optimal solution
2.3 Else relax Φ so that more soft clauses can be falsified.

▶ Minimum relaxation⇒ optimal solution when Φ is SAT.
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SAT-Based MaxSat Solving

▶ Iterative Search methods
▶ Improving by using Cores
▶ Improving by using Cores and new variables
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Iterative SAT solving
Linear Search

Simplest (and least effective) linear search approach. (Unit clause
weights).
1. Input MaxSat CNF Φ
2. Add blocking variable bi to every soft clause ci ∈ Φ

3. Set k = 0.
4. If SAT(Φ ∪ CNF(

∑
bi ≤ k)) return k

5. Else k = k + 1 and repeat 4.
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Iterative SAT solving (Linear Search)

1. Input MaxSat CNF Φ
2. Add blocking
variable bi to every
soft clause ci ∈ Φ

3. Set k = 0.
4. If
SAT(Φ ∪ CNF(

∑
bi ≤

k)) return k
5. Else k = k + 1 and
repeat 4.

▶ CNF converts cardinality constraint
to CNF. By allowing k of the bi ’s to
be true we “remove” k soft clauses.

▶ SAT: Try to satisfy remaining
clauses after removing any set of
up to k soft clauses (the SAT solver
searches for which ones to
remove).

▶ If k yields UNSAT we try removing
k + 1 soft clauses.

▶ If k yields SAT, prior UNSAT for
k − 1 proves that the satisfying
assignment is optimal.
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Iterative SAT solving (Linear Search)

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

1. Add blocking variables to soft clauses:
(¬a), . . ., (¬t) 7→ (¬a ∨ ba), . . ., (¬u ∨ bu).

2. When k = 0 cardinality constraint∑
bi ≤ k forces ¬ba,¬bb, . . .,¬bu.

3. This in turn forces ¬a,¬b, . . .,¬u.
4. Hard clause (a ∨ b) (must exit S) falsified

⇒ UNSAT.
▶ Hard clause (k ∨ q ∨ r) (must enter G)
also falsified.

5. Increment k to k = 1.
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Iterative SAT solving (Linear Search)

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

1. Increment k = 1.
2. If the solver tries to set a square like e to
true:

▶ the clause (¬e ∨ be) forces be.
▶ the cardinality constraint forces all
other b’s to be false and these force all
squares to false.

▶ Hard constraint e→ (d + j + l+ f = 2)
is falsified and the solver forces ¬e.

3. If the solver sets a (neighbour of S) to
true

▶ force ba, and b-variables and squares to
be false.

▶ a→ (S + c = 2) is falsified.
▶ solver forces ¬a. And from (a ∨ b) forces
b.

▶ b→ (S + g = 2) is falsified.
▶ UNSAT.
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Iterative SAT solving (Linear Search)

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ SAT solver will examine longer paths as k
gets larger.

▶ A path must exit S. Path can visit at most
k squares. Must end at G else obtain
conflict: the last square will have not
have two visited neighbours.

▶ When all paths of length k from S are
refuted we get UNSAT.

▶ Only when k is large enough to admit a
path from S to G will we get SAT.

▶ The smallest value of k will be found,
and the satisfying assignment will
specify a shortest path.
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Iterating over k

▶ Different ways of iterating over values of k.
▶ Three “standard” approaches:

1. Linear search (not effective)
▶ Start from k = 1.
▶ Increment k by 1 until a solution is found.

2. Binary search (used effectively in MSCG when core
based reasoning is added)

▶ UB = # of soft clauses; LB = 0.
▶ Solve with k = (UB+ LB)/2.
▶ if SAT: UB = k; if UNSAT: LB = k
▶ When UB = LB+ 1, UB is solution.

k = 1

k = 2

k = 3

NO:

upper

YES:

upper

upper

?

low
er

low
er

low
er
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Iterating over k

3. SAT to UNSAT (used in QMaxSAT, can be effective on certain
problems)
3.1 Find a satisfying assignment π of the hard clauses.
3.2 Solve with k = (# of clauses falsified by π)− 1
3.3 If SAT found better assignment. Reset k and repeat 2.
3.4 If UNSAT last assignment π found is optimal.

This method finds a sequence of improved models—thus can give
an approximate solution.
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Iterative SAT to UNSAT

S

G

a

c

h i

d

b g t

rf

qle

j k

m n o p

m

S

G

a

c

h i

d

b g t

rf

qle

j k

m n o p

S

G

a

c

h i

d

b g t

rf

qle

j k

m n o p

▶ The SAT solver must find a shorter path
at each stage.
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SAT-based MaxSat Solving using Cores
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SAT-Based MaxSat using Cores

Core
Given an unsatisfiable CNF formula Φ, a core of Φ is a subset of Φ
that is itself unsatisfiable.

Cores for MaxSat
A subset of soft clauses of Φ that together with the hard clauses
of Φ is unsatisfiable.
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Cores from SAT Solvers

▶ Modern SAT solvers can return a core when input is UNSAT.
▶ By removing the hard clauses from the core, we obtain a core
for MaxSat

▶ (κ, SAT?) = sat(Φ)
Sat solve Φ. Return Boolean SAT or UNSAT status: SAT?
If UNSAT, return a core κ (set of soft clauses).

▶ Different methods are available for obtaining the core:
1. Using assumptions.
2. Outputting a clausal proof and then obtaining a core from
trimming it.
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Core-Based MaxSat Solving

Improvement over iterative methods
▶ In the linear approach we add CNF(

∑
bi ≤ k) to the SAT

solver.
▶ There is one bi for every soft clause in the theory. This
cardinality constraint could be over 100,000s of variables: it
is very loose.
No information about which particular blocking variables to
make true.

▶ This makes SAT solving inefficient: could have to explore
many choices of subsets of k soft clauses to remove.

▶ However, if we obtain a core we have a powerful constraint
on which particular soft clauses need to be removed.
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Constraint from Cores

▶ If κ is a MaxSat core, then at least one if the soft clauses in it
must be removed: no truth assignment satisfies every clause
in κ along with all of the hard clauses.

▶ Typically cores are much smaller than the set of all soft
clauses.
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MSU3

MSU3 is an simple MaxSat algorithm for exploiting cores
[Marques-Silva and Planes, 2007].

▶ Only adding blocking variables to soft clauses that appear in
a core.

▶ CNF(
∑
bi ≤ k) generally remains over much smaller set of

variables.
cardinality constraint much tighter
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MSU3

1. Input MaxSat CNF Φ
2. k = 0; BV = {}.
3. (κ, SAT?) = sat(Φ)
4. If SAT? return k.
5. k = k + 1
6. Update Φ:

6.a For c ∈ κ if c has no blocking
variable
c = c ∪ {b} (new blocking
variable)
BV = BV ∪ {b}

6.b Remove previous cardinality
constraint.

6.c Add CNF(
∑

b∈BV b ≤ k + 1)

7. GOTO 3

▶ Initially NO blocking
variables!

▶ The cardinality
constraint is always only
over soft clauses that
have participated in
some core.

▶ The blocking variables in
the cardinality constraint
grows as more cores are
discovered.

▶ On many problems
however the cardinality
constraint remains over
a proper subset of the
soft clauses.
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MSU3

S

G

a

c

h i

d

b g u
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m

1. κ = {(¬a)(¬b)} is one possible core
when k = 0.

2. Update these soft clauses to add a
blocking variable to each:
{(¬a, ba), (¬b, bb)}.

3. Add CNF(ba + bb ≤ 1)
4. k = 1
5. SAT solve again.
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MSU3

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

1. κ = {(¬c)(¬g)} is a possible core in the
updated formula.

2. None has a blocking variable as yet—add:
{(¬c, bc), (¬g, bg)}.

3. Remove previous cardinality constraint.
4. Add CNF(ba + bb + bc + bg ≤ 2)
5. k = 2
6. SAT solve again.
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MSU3

1. By itself MSU3 is not effective.
2. Very effective when combined with an incremental
construction of the cardinality constraint (so that each new
constraint builds on the encoding of the previous constraint).

[Martins, Joshi, Manquinho, and Lynce, 2014]

3. OpenWBO uses MSU3 with incremental cardinality
constraints to achieve state-of-the-art performance on many
problems.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stronger Core Constraints

▶ In 2nd iteration MSU3 used the cardinality constraint
(ba + bb + bc + bg ≤ 2).

▶ At this stage actually know something stronger:
(ba + bb ≤ 1) and (bc + bg ≤ 1).

▶ In the Fu-Malik algorithm each core found is encoded as a
separate cardinality constraint.

[Fu and Malik, 2006]

▶ So Fu-Malik would at the 2nd iteration use the stronger
constraint
(ba + bb ≤ 1) ∧ (bc + bg ≤ 1).
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Overlapping Cores

▶ However, overlapping cores pose a problem!
▶ Say the first and second cores are

1. {(¬a), (¬b)}
2. {(¬b, bb), (¬c), (¬g)}

▶ The soft clause (¬b) participates in both cores!
▶ Core 2 is a core of the updated formula that includes

(¬a ∨ ba), (¬b ∨ bb) and (ba + bb ≤ 1): one of a or b can be
true.

▶ Core 2 is an unsatisfiable set of soft clauses even when we
are allowed to set one of a or b to true.
Core 2 and Core 1 imply that we have(

a ∧ (b ∨ c ∨ g)
)
∨
(
b ∧ (c ∨ g)

)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Overlapping Cores

▶ For these cores the constraint
(ba + bb ≤ 1) ∧ (bb + bc + bg ≤ 1) is too strong: E.g.
b ∧ c is a solution of(

a ∧ (b ∨ c ∨ g)
)
∨
(
b ∧ (c ∨ g)

)
but is not a solution of the two cardinality constraints

(ba + bb ≤ 1) ∧ (bb + bc + bg ≤ 1)

▶ Dealing with overlapping cores is a complicating issue for
most core-based algorithms.
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Fu-Malik

Fu-Malik deals with overlapping cores by adding a new blocking
variables to the clauses in the core even when they already have a
previous blocking variable.
1. k = 0, κ = {(¬a), (¬b)}
2. Update these clauses to {(¬a, ba), (¬b, bb)}.
3. Add CNF(ba + ba ≤ 1)
4. k = 1, κ = {(¬b, bb), (¬c), (¬g)}
5. Update these clauses to {(¬b, bb, b1b), (¬c, bc), (¬g, bg)}
6. Add CNF(b1b + bc + bg ≤ 1)
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Fu-Malik

1. Multiple blocking variables in the same soft clause are
redundant—lead to symmetric assignments that must be
refuted by the SAT solver.

[Ansótegui, Bonet, and Levy, 2013a]

2. Cardinality constraint is always ≤ 1 so can be encoded more
efficiently.

3. Fu-Malik contains some key ideas but no longer state of the
art.
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WPM2

▶ Another method for dealing with overlapping cores was
developed by Ansótegui et al. [Ansótegui, Bonet, and Levy, 2013a]

▶ Only one blocking variable per soft clause.
▶ Group intersecting cores into disjoint covers.

The cores might not be disjoint but the covers will be.
▶ Put a distinct at-most ≤ cardinality constraint over the soft
clauses in a cover

Disjoint so this works.
▶ Keep an at-least ≥ constraint over the clauses in a core.
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WPM2

Cover	1	

Core	1	
b1+b2+b3	≥	1	

Core	3	
b3+c2+c3+c4	≥	1	

b1+b2+b3+c2+c3+c4	≤	2	

Cover	2	

Core	2	
d1+d2+d3	≥	1	 Core	4	

e1+e2+e3+e4		≥	1	

d1+d2+d3+e1+e2+e3+e4	≤	3	

Core	2	
d3+e1	≥	1	
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WPM2

Cover	1	

Core	1	
b1+b2+b3	≥	1	

Core	3	
b3+c2+c3+c4	≥	1	

b1+b2+b3+c2+c3+c4	≤	2	

Cover	2	

Core	2	
d1+d2+d3	≥	1	 Core	4	

e1+e2+e3+e4		≥	1	

d1+d2+d3+e1+e2+e3+e4	≤	3	

Core	2	
d3+e1	≥	1	

▶ Cover 1 and Cover 2 are disjoint sets of soft clauses.
▶ Each core in a cover has a non-empty intersection with
another core in the cover (only place cores in the same cover
if you have to)
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WPM2

▶ When each new core is found covers must be adjusted.
▶ Each core in the cover found one after the other.
▶ A soft clause of each core must be blocked even though we
have already blocked a clause from all prior cores.

▶ Cover at-most bound equal to sum of its core at-least bounds.
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WPM2

▶ Each new core generates an update to the set of covers
▶ Core might make covers non-disjoint: these have to be
unioned into one cover.

▶ Cover at-least must be updated.
▶ At least one at-least constraint is relaxed—so eventually
formula must become SAT.
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Cores plus New Variables
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State-of-the-art Core based MaxSat

▶ Recent advances in SAT-Based MaxSat solving comes from
approaches that add new variables to the formula.

▶ New variables always been used encoding the cardinality
constraint

but no attention was paid to the structure of these
variables.

▶ Current best SAT-Based approaches EVA, MSCG-OLL,
OpenWBO,WPM3, MAXINO use cores and add new variables.

▶ EVA, MSCG-OLL and WPM3 explicitly add new variables.
▶ OpenWBO and MAXINO more carefully structure the new
variables in the cardinality constraints.
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core

2. b1 ≡ c1 b2 ≡ c2 b3 ≡ c3 new variables bi equivalent to ci
b4 ≡ c4 b5 ≡ c5
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core

2. b1 ≡ c1 b2 ≡ c2 b3 ≡ c3 new variables bi equivalent to ci
b4 ≡ c4 b5 ≡ c5

3. Remove softs {c1, c2, c3, c4, c5}
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core

2. b1 ≡ c1 b2 ≡ c2 b3 ≡ c3 new variables bi equivalent to ci
b4 ≡ c4 b5 ≡ c5

3. Remove softs {c1, c2, c3, c4, c5}
4. (¬b1 ∨ ¬b2 ∨ ¬b3 ∨ ¬b4 ∨ ¬b5) must falsify one of the ci
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core

2. b1 ≡ c1 b2 ≡ c2 b3 ≡ c3 new variables bi equivalent to ci
b4 ≡ c4 b5 ≡ c5

3. Remove softs {c1, c2, c3, c4, c5}
4. (¬b1 ∨ ¬b2 ∨ ¬b3 ∨ ¬b4 ∨ ¬b5) must falsify one of the ci
5. d1 ≡ b2 ∧ b3 ∧ b4 ∧ b5 new variables di

d2 ≡ b3 ∧ b4 ∧ b5 di indicates ci+1 ...c5 satisfied
d3 ≡ b4 ∧ b5
d4 ≡ b5
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Eva

Processing a new core in EVA [Narodytska and Bacchus, 2014]

1. Core = {c1, c2, c3, c4, c5} New core

2. b1 ≡ c1 b2 ≡ c2 b3 ≡ c3 new variables bi equivalent to ci
b4 ≡ c4 b5 ≡ c5

3. Remove softs {c1, c2, c3, c4, c5}
4. (¬b1 ∨ ¬b2 ∨ ¬b3 ∨ ¬b4 ∨ ¬b5) must falsify one of the ci
5. d1 ≡ b2 ∧ b3 ∧ b4 ∧ b5 new variables di

d2 ≡ b3 ∧ b4 ∧ b5 di indicates ci+1 ...c5 satisfied
d3 ≡ b4 ∧ b5
d4 ≡ b5

6. (b1 ∨ d1, 1) new softs
(b2 ∨ d2, 1)
(b3 ∨ d3, 1)
(b4 ∨ d4, 1)
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Eva

New softs relax the formula, e.g., falsify one soft.
▶ Falsify one soft clauses from {c1, . . . , c5} (say c3):

1. b1, b2,¬b3, b4, b5.
2. Most new softs (bi ∨ di, 1) satisfied by bi .
3. Consider (b3, d3, 1)
d3 ≡ b4 ∧ b5 is TRUE
so this soft clause is satisfied.

No cost is incurred in the new formula. (new formula is
relaxed)
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Eva

New softs relax the formula, e.g., falsify more than one soft.
▶ Falsify two soft clauses (say c2 and c3):

1. b1,¬b2,¬b3, b4, b5.
2. (b1 ∨ d1, 1), (b4 ∨ d4, 1) satisfied.
3. d2 ≡ b3 ∧ b4 ∧ b5 is FALSE

(b2 ∨ d2, 1) is FALSIFIED.
4. d3 ≡ b4 ∧ b5 is TRUE

(b3 ∨ d3, 1) is satisfied
So if 2 of the ci are falsified only one new soft clause is
falsified.
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Eva

▶ di variables capture a disjunction of soft clauses (c.f.
extended resolution)

▶ If a future core involves (¬bi ∨ ¬di, 1) we get a new variable
xi ≡ (¬b1 ∨ ¬di).

▶ So new variables can build up to represent complex
conditions.

▶ These variable seem to help the SAT solver in finding new
cores.

▶ But a deeper understanding of this has not yet been
developed
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Soft Cardinality Constraints

▶ MSCG-OLL and WPM3 introduce new variables to represent
the cardinality constraints.

▶ d ≡ b1 + b2 + b3 + b4 + b5 ≤ 1.
▶ Soft clause (d, 1) is introduced.
▶ (d, 1) is falsified if b1 + b2 + b3 + b4 + b5 > 1.
▶ The (d, 1) soft clauses can participate in new cores.
▶ Again these variables seem to help the SAT solver in finding
new cores.

[Morgado, Dodaro, and Marques-Silva, 2014]

[Ansótegui, Didier, and Gabàs, 2015]
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New Variables in Cardinality Constraints

▶ openWBO and MAXINO develop special methods for
constructing the cardinality constraints associated with each
core.

▶ They build them in such a way that each new cardinality
constraint can share variables with the previous constraints.

▶ This tends to generate new variables expressing the sum of
useful sets of soft constraints (soft constraints that appear
together in more than one core).

▶ Again these variable seem to help the SAT solver
[Martins, Joshi, Manquinho, and Lynce, 2014]

[Alviano, Dodaro, and Ricca, 2015]

Open problem: achieve a better understand of the impact of
these new variables on the SAT solving process
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Dealing with Weighted Soft Clauses

Presented algorithms using unit weight soft
clauses

How do we deal with clauses of different weights!
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Clause Cloning

▶ Methods can deal with new core when soft clauses in core
have same weight.

▶ If this weight is w:
k = k + w rather than k = k + 1.

▶ Clause Cloning is the method used to deal with varying
weights.

[Ansótegui, Bonet, and Levy, 2009; Manquinho, Silva, and Planes, 2009]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Clause Cloning

1. K is new core.
2. wmin is minimum weight in K.
3. We split each clause (c,w) ∈ K into two clauses

(1) (c,wmin) (2) (c,w − wmin).
4. Keep all clauses (2) (c,w − wmin) as soft clauses

(discard zero weight clauses)
5. We let K be all clauses (1) (c,wmin)
6. We process K as a new core

(all clauses in K have the same weight)
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Sat Based MaxSat: Summary

▶ Techniques are effective on large MaxSat problems,
especially those with many hard clauses.

▶ The innovation is in obtaining more efficient ways to encode
and solve the individual SAT decision problems that have to
be solved.

▶ Some work done on understand the core structure and its
impact on SAT solving efficiency but more needed.

[Bacchus and Narodytska, 2014]

▶ The method of clause cloning for dealing with varying clause
weights is not effective when there are many different
weights.
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Implicit Hitting Set
Algorithms for MaxSat

[Davies and Bacchus, 2011, 2013b,a]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set H is a hitting set of S if H ∩ S ̸= ∅ for all S ∈ S .

A hitting set H is optimal if no H′ ⊂
∪

S with |H′| < |H| is a hitting
set of S .

What does this have to do with MaxSat?
For any MaxSat instance F:
for any optimal hitting set H of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ H.
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Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set H is a hitting set of S if H ∩ S ̸= ∅ for all S ∈ S .

A hitting set H is optimal if no H′ ⊂
∪

S with |H′| < |H| is a hitting
set of S .

What does this have to do with MaxSat?
For any MaxSat instance F:
for any optimal hitting set H of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ H.
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Hitting Sets and UNSAT Cores

Key insight
To find an optimal solution to a MaxSat instance F,
it suffices to:
▶ Find an (implicit) hitting set F of the UNSAT cores of F.

▶ Implicit refers to not necessarily having all MUSes of F.

▶ Find a solution to F \ H.
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Implicit Hitting Set Approach to MaxSat
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set H over K,
and rule out the clauses in H for the next SAT solver call

using an IP solver
...until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑
C∈∪K

c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSat
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Implicit Hitting Set Approach to MaxSat
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set H over K,
and rule out the clauses in H for the next SAT solver call

using an IP solver
...until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑
C∈∪K

c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSat
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Implicit Hitting Set Approach to MaxSat
“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Provide explanations for unsatisfiability in terms of cores
▶ Instead of adding clauses to / modifying the input MaxSAT
instance:
each SAT solver call made on a subset of the clauses in the
instance

▶ IP solvers at optimization
▶ Instead of directly solving the input MaxSAT instance:
solve a sequence of simpler hitting set problems over the
cores

Instantiation of the implicit hitting set approach
[Moreno-Centeno and Karp, 2013]

▶ Also possible to instantiate beyond MaxSat
[Saikko, Wallner, and Järvisalo, 2016]
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

3. Update core set
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

4. Min-cost HS of K
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

5. UNSAT core
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses Fh, soft clauses Fs, weight function c : Fs 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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Solving MaxSat by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of Fh ∧ Fs by hs:
any solution to Fh ∧ (Fs \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
Fh, Fs
hs := ∅
K := ∅

SAT solver

Fh ∧ (Fs \ hs)

IP solver

min
∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve Fh ∧ (Fs \ ∅)
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve Fh ∧ (Fs \ ∅)⇝ UNSAT core K = {C1, C2, C3, C4}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}}

▶ Update K := K ∪ {K}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}}

▶ Solve minimum-cost hitting set problem over K
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C1}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}}

▶ SAT solve Fh ∧ (Fs \ {C1})
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}}

▶ SAT solve Fh ∧ (Fs \ {C1})⇝ UNSAT core
K = {C9, C10, C11, C12}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}, {C9, C10, C11, C12}}

▶ Update K := K ∪ {K}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}, {C9, C10, C11, C12}}

▶ Solve minimum-cost hitting set problem over K
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}, {C9, C10, C11, C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C1, C9}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}, {C9, C10, C11, C12}}

▶ SAT solve Fh ∧ (Fs \ {C1, C9})
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1, C2, C3, C4}, {C9, C10, C11, C12}}

▶ SAT solve Fh ∧ (Fs \ {C1, C9})
⇝ UNSAT core K = {C3, C4, C7, C8, C11, C12}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ Update K := K ∪ {K}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ Solve minimum-cost hitting set problem over K
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C4, C9}
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ SAT solve Fh ∧ (Fs \ {C4, C9})
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ SAT solve Fh ∧ (Fs \ {C4, C9})⇝ SATISFIABLE.
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MaxSat by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1, C2, C3, C4}, {C9, C10, C11, C12}, {C3, C4, C7, C8, C11, C12}}

▶ SAT solve Fh ∧ (Fs \ {C4, C9})⇝ SATISFIABLE.
Optimal cost: 2 (cost of hs).
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Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a disjoint phase for obtaining several cores before/between
hitting set computations

▶ combinations of greedy and exact hitting sets computations
▶ ...

Some of these optimizations are integral for making the solvers
competitive.

For more on some of the details, see [Davies and Bacchus, 2011, 2013b,a]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Implicit Hitting Set

▶ Effective on range of MaxSat problems including large ones.
▶ Superior to other methods when there are many distinct
weights.

▶ Usually superior to CPLEX.
▶ On problems with no weights or very few weights can be
outperformed by SAT based approaches.
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Iterative Use of SAT Solvers
(for MaxSat)
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Iterative Use of SAT Solvers (for MaxSat)

▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.

▶ Such forced partial assignments are called assumptions
▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once
▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
solver calls can depend on the results of the previous solver
calls

▶ The solver can keep its internal state from the previous solver
call to the next

▶ Learned clauses
▶ Heuristic scores
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Iterative Use of SAT Solvers (for MaxSat)

▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.

▶ Such forced partial assignments are called assumptions
▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once
▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
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▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.
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▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once

▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
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Iterative Use of SAT Solvers (for MaxSat)

▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.

▶ Such forced partial assignments are called assumptions
▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once
▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
solver calls can depend on the results of the previous solver
calls

▶ The solver can keep its internal state from the previous solver
call to the next

▶ Learned clauses
▶ Heuristic scores
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Iterative Use of SAT Solvers (for MaxSat)

▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.

▶ Such forced partial assignments are called assumptions
▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once
▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
solver calls can depend on the results of the previous solver
calls

▶ The solver can keep its internal state from the previous solver
call to the next

▶ Learned clauses
▶ Heuristic scores
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Iterative Use of SAT Solvers (for MaxSat)

▶ In many application scenarios, including MaxSat:
it is beneficial to be able to make several SAT checks on the
same input CNF formula under different forced partial
assignments.

▶ Such forced partial assignments are called assumptions
▶ “Is the formula F satisfiable under the assumption x = 1?”

▶ Various modern CDCL SAT solvers implement an API for
solving under assumption

▶ The input formula is read in only once
▶ The user implements a iterative loop that calls the same
solver instantiation under different sets of assumptions

▶ The calls can be adaptive, i.e., assumptions of future SAT
solver calls can depend on the results of the previous solver
calls

▶ The solver can keep its internal state from the previous solver
call to the next

▶ Learned clauses
▶ Heuristic scores
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Incremental APIs in SAT Solver: Minisat

Minisat http://www.minisat.se
▶ Perhaps the most used SAT solver
▶ Implements the CDCL algorithm
▶ Very clean and easy-to-understand-and-modify source code
▶ Offers an incremental interface

▶ solve(partial assignment: list of assumptions):
for making a SAT solver call under a set of assumptions

▶ analyzeFinal:
returns an explanation for unsatisfiability under the
assumptions as a clause over a subset of the assumptions

▶ addClauses:
for adding more clauses between solver calls

http://www.minisat.se
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Explaining Unsatisfiability

CDCL SAT solvers determine unsatisfiability when learning the
empty clause
▶ By propagating a conflict at decision level 0

Explaining unsatisfiability under assumptions

▶ The reason for unsatisfiability can be traced back to
assumptions that were necessary for propagating the conflict
at level 0.

▶ Essentially:
▶ Force the assumptions as the first “decisions”
▶ When one of these decisions results in a conflict: trace the
reason of the conflict back to the forced assumptions
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Implementing MaxSat Algorithms via Assumptions

▶ Instrument each soft clause Ci with a new “assumption”
variable ai
⇝ replace Ci with (Ci ∨ ai) for each soft clause Ci

▶ ai = 0 switches Ci “on”,
ai = 1 switches Ci “off”

▶ MaxSat core: a subset of the assumptions variables ais
▶ Heavily used in core-based MaxSat algorithms
▶ In the implicit hitting set approach:
hitting sets over sets of assumption variables

▶ Cost of including ai in a core (i.e., assigning ai = 1):
weight of the soft clause Ci

▶ Can state cardinality constraints directly over the assumption
variables

▶ Heavily used in MaxSat algorithms employing cardinality
constraints
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Modelling and Applications
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Representing High-Level Soft Constraints in MaxSat

MaxSat allows for compactly encoding various types of high-level
finite-domain soft constraints
▶ Due to Cook-Levin Theorem:
Any NP constraint can be polynomially represented as
clauses

Basic Idea
Finite-domain soft constraint C with associated weight WC .

Let CNF(C) =
∧m
i=1 Ci be a CNF encoding of C.

Softening CNF(C) as Weighted Partial MaxSat:
▶ Hard clauses:

∧m
i=1(Ci ∨ a),

where a is a fresh Boolean variable
▶ Soft clause: (a) with weight WC .
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Representing High-Level Soft Constraints in MaxSat

MaxSat allows for compactly encoding various types of high-level
finite-domain soft constraints
▶ Due to Cook-Levin Theorem:
Any NP constraint can be polynomially represented as
clauses

Basic Idea
Finite-domain soft constraint C with associated weight WC .

Let CNF(C) =
∧m
i=1 Ci be a CNF encoding of C.

Softening CNF(C) as Weighted Partial MaxSat:
▶ Hard clauses:

∧m
i=1(Ci ∨ a),

where a is a fresh Boolean variable
▶ Soft clause: (a) with weight WC .
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Representing High-Level Soft Constraints in MaxSat

MaxSat allows for compactly encoding various types of high-level
finite-domain soft constraints
▶ Due to Cook-Levin Theorem:
Any NP constraint can be polynomially represented as
clauses

Basic Idea
Finite-domain soft constraint C with associated weight WC .

Let CNF(C) =
∧m
i=1 Ci be a CNF encoding of C.

Softening CNF(C) as Weighted Partial MaxSat:
▶ Hard clauses:

∧m
i=1(Ci ∨ a),

where a is a fresh Boolean variable
▶ Soft clause: (a) with weight WC .

Important for various applications of MaxSat
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MaxSat Applications

probabilistic inference [Park, 2002]
design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]

[Chen, Safarpour, Marques-Silva, and Veneris, 2010]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]

[Ignatiev, Janota, and Marques-Silva, 2014]
Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]
optimal covering arrays [Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Järvisalo, 2016]
...
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correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
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design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]
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MaxSat-based
Correlation Clustering

[Berg and Järvisalo, 2016]
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Correlation Clustering [Bansal, Blum, and Chawla, 2004]

Partitioning data points into clusters based on pair-wise similarity
information

▶ NP-hard optimization problem [Bansal, Blum, and Chawla, 2004]

▶ The number of clusters available not fixed
▶ Intuitively: objective function under minimization aims at
balancing precision and recall

▶ Several approximation algorithms proposed
[Bansal, Blum, and Chawla, 2004; Ailon, Charikar, and Newman, 2008; Charikar, Guruswami, and

Wirth, 2005; Demaine, Emanuel, Fiat, and Immorlica, 2006]

▶ Approximation guarantees under binary similarity information
▶ Semi-definite relaxation, quadratic programming



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Correlation Clustering [Bansal, Blum, and Chawla, 2004]

Applications in various settings
▶ Clustering documents based on topics

[Bansal, Blum, and Chawla, 2004; Gael and Zhu, 2007]

▶ Biosciences [Ben-Dor, Shamir, and Yakhini, 1999]

▶ Social network analysis, information retrieval
[Bonchi, Gionis, and Ukkonen, 2011; Bonchi, Gionis, Gullo, and Ukkonen, 2012; Cesa-Bianchi,

Gentile, Vitale, and Zappella, 2012]

▶ Consensus clustering [Bonizzoni, Vedova, Dondi, and Jiang, 2005]

for e.g. microarray data analysis
[Filkov and Skiena, 2004b,a; Giancarlo and Utro, 2011; Yu, Wong, and Wang, 2007]
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Cost-Optimal Correlation Clustering
V f1 f2 f3 ...
v1 0.5 1 3 ...
v2 −3 0 −2 ...
v3 0.7 1 5 ...
v4 4 1 7 ...
v5 6 0 10 ...

DATA

⇒ W =


0 1 0.7 0 0.2
1 0 4 −7 −5
0.7 4 0 ∞ 0
0 −7 ∞ 0 −3
0.2 −5 0 −3 0


SIMILARITY MATRIX

⇒

MAXSAT:
encoding

+
solving

⇒

v1

v2

v3

v4

v5

SOLUTION
CLUSTERING

INPUT: a similarity matrix W ,
TASK: find a cost-optimal correlation clustering, i.e.,
a function cl∗ : V → N minimizing

min
cl : V→N

∑
cl(vi)=cl(vj)

i<j

(I[−∞ < W(i, j) < 0] · |W(i, j)|)+

∑
cl(vi )̸=cl(vj)

i<j

(I[∞ > W(i, j) > 0] ·W(i, j))

where the indicator function I[b] = 1 iff the condition b is true.
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Why MaxSat-based Correlation Clustering?

▶ Cost-optimal solutions notably better (w.r.t. objective)
compared to previous approximation algorithms

▶ Both semi-definite relaxations and specialized algorithms
with approximation guarantees

▶ Allows for constrained correlation clustering [Wagstaff and Cardie,

2000; Wagstaff, Cardie, Rogers, and Schrödl, 2001; Davidson and Ravi, 2007]

Can adapt to additional user knowledge simply via imposing
additional clauses

▶ No need to adapt search algorithm —not always the case for
approximation algorithms

▶ MaxSat (using the implicit hitting set approach) scales better
than IP solvers

In this tutorial: to illustrate bit-level “log encodings”
How to encode non-binary variables with large domains
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Correlation Clustering as an Integer Program
[Ailon, Charikar, and Newman, 2008; Gael and Zhu, 2007]

▶ Use indicator variables xij ∈ {0, 1}.
▶ xij = 1 iff cl(i) = cl(j), i.e., points i and j co-clustered

IP formulation

Minimize
∑

−∞<W(i,j)<0
i<j

(
xij · |W(i, j)|

)
−

∑
∞>W(i,j)>0

i<j

(
xij ·W(i, j)

)

where xij + xjk ≤ 1+ xik for all distinct i, j, k
xij = 1 for all W(i, j) = ∞
xij = 0 for all W(i, j) = −∞

xij ∈ {0, 1} for all i, j

Transitivity-based encoding
O(n2) variables and O(n3) constraints very large
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Reformulating the IP as MaxSat
▶ Hard clauses encode well-defined clusterings
▶ Soft clauses encode the object function
▶ O(n2) variables and O(n3) clauses.
▶ Same indicator variables: xij = 1 iff cl(vi) = cl(vj)

Hard clauses
Encoding the linear constraint xij + xjk ≤ 1+ xik :
▶ (xij ∧ xjk) → xik
as clause: (¬xij ∨ ¬xjk ∨ xik)

Encoding W(i, j) = ∞: (xij)

Encoding W(i, j) = −∞: (¬xij)

Soft clauses
Encoding the objective function:
▶ For W(i, j) ∈ (0,∞): (xij) with weight W(i, j)
▶ For W(i, j) ∈ (−∞, 0): (¬xij) with weight |W(i, j)|
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Reformulating the IP as MaxSat
▶ Hard clauses encode well-defined clusterings
▶ Soft clauses encode the object function
▶ O(n2) variables and O(n3) clauses.
▶ Same indicator variables: xij = 1 iff cl(vi) = cl(vj)

Hard clauses
Encoding the linear constraint xij + xjk ≤ 1+ xik :
▶ (xij ∧ xjk) → xik
as clause: (¬xij ∨ ¬xjk ∨ xik)

Encoding W(i, j) = ∞: (xij)

Encoding W(i, j) = −∞: (¬xij)

Soft clauses
Encoding the objective function:
▶ For W(i, j) ∈ (0,∞): (xij) with weight W(i, j)
▶ For W(i, j) ∈ (−∞, 0): (¬xij) with weight |W(i, j)|
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Reformulating the IP as MaxSat
▶ Hard clauses encode well-defined clusterings
▶ Soft clauses encode the object function
▶ O(n2) variables and O(n3) clauses.
▶ Same indicator variables: xij = 1 iff cl(vi) = cl(vj)

Hard clauses
Encoding the linear constraint xij + xjk ≤ 1+ xik :
▶ (xij ∧ xjk) → xik
as clause: (¬xij ∨ ¬xjk ∨ xik)

Encoding W(i, j) = ∞: (xij)

Encoding W(i, j) = −∞: (¬xij)

Soft clauses
Encoding the objective function:
▶ For W(i, j) ∈ (0,∞): (xij) with weight W(i, j)
▶ For W(i, j) ∈ (−∞, 0): (¬xij) with weight |W(i, j)|
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

{(¬x12 ∨ ¬x23 ∨ x13), (¬x12 ∨ ¬x13 ∨ x23), (¬x23 ∨ ¬x13 ∨ x12)}

▶ Soft clauses:

{(x12; 1), (x13; 1), (¬x23; 1)}
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

{(¬x12 ∨ ¬x23 ∨ x13), (¬x12 ∨ ¬x13 ∨ x23), (¬x23 ∨ ¬x13 ∨ x12)}

▶ Soft clauses:

{(x12; 1), (x13; 1), (¬x23; 1)}
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

{(¬x12 ∨ ¬x23 ∨ x13), (¬x12 ∨ ¬x13 ∨ x23), (¬x23 ∨ ¬x13 ∨ x12)}

▶ Soft clauses:

{(x12; 1), (x13; 1), (¬x23; 1)}
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

{(¬x12 ∨ ¬x23 ∨ x13), (¬x12 ∨ ¬x13 ∨ x23), (¬x23 ∨ ¬x13 ∨ x12)}

▶ Soft clauses:

{(x12; 1), (x13; 1), (¬x23; 1)}

▶ 1 Cluster. Cost: 1.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

{(¬x12 ∨ ¬x23 ∨ x13), (¬x12 ∨ ¬x13 ∨ x23), (¬x23 ∨ ¬x13 ∨ x12)}

▶ Soft clauses:

{(x12; 1), (x13; 1), (¬x23; 1)}

▶ 2 Clusters. Cost: 1.
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A More Compact MaxSat Encoding

Bit-level / log encodings
For representing non-binary variables with large domains
▶ To represent the value assignment of a variable with domain
D = {0, . . . , |D| − 1}:

▶ use log |D| Boolean variables b1..blog |D|
▶ Interpret an assignment to b1..blog D as the bit-representation
of a value in D.

Does not always pay of due to poor propagation properties!

However, in correlation clustering:

▶ Domain-size: number of clusters
▶ Can be up to number of points to be clustered
▶ For example: the cluster assignment of each of 512 points
can be represented with log2 512 = 9 bits
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Log Encoding of Correlation Clustering
Variables
▶ Cluster assignment of point i: variables bki for k = 1.. logN.
▶ Sij = 1 iff points i and j are co-clustered
▶ Auxiliary: EQkij = 1 iff b

k
i = b

k
j

Hard clauses
▶ Semantics of EQkij: EQkij ↔ (bki ↔ bkj )

▶ Semantics of Sij: Sij ↔ (EQ1ij ∧ · · · ∧ EQlogNij )

▶ Encoding W(i, j) = ∞: (Sij)
Encoding W(i, j) = −∞: (¬Sij)

Soft clauses
▶ For W(i, j) ∈ (0,∞): (Sij) with weight W(i, j)
▶ For W(i, j) ∈ (−∞, 0): (¬Sij) with weight |W(i, j)|
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

S12 ↔ (EQ112 ∧ EQ212) EQ112 ↔ (b11 ↔ b12)

EQ212 ↔ (b21 ↔ b22)

S13 ↔ (EQ113 ∧ EQ213) EQ113 ↔ (b11 ↔ b13)

EQ213 ↔ (b21 ↔ b23)

S23 ↔ (EQ123 ∧ EQ223) EQ123 ↔ (b12 ↔ b13)

EQ223 ↔ (b21 ↔ b23)

▶ Soft clauses:

{(S12; 1), (S13; 1), (¬S23; 1)}
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

▶ Hard clauses:

S12 ↔ (EQ112 ∧ EQ212) EQ112 ↔ (b11 ↔ b12)

EQ212 ↔ (b21 ↔ b22)

S13 ↔ (EQ113 ∧ EQ213) EQ113 ↔ (b11 ↔ b13)

EQ213 ↔ (b21 ↔ b23)

S23 ↔ (EQ123 ∧ EQ223) EQ123 ↔ (b12 ↔ b13)

EQ223 ↔ (b21 ↔ b23)

▶ Soft clauses:

{(S12; 1), (S13; 1), (¬S23; 1)}
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Example

W =

0 1 1
1 0 −1
1 −1 0


1

2

3

1
−1

1

Clustering:
points 1,2 in cluster 1
point 3 in cluster 2

▶ Hard clauses:

S12 ↔ (EQ112 ∧ EQ212) EQ112 ↔ (b11 ↔ b12)

EQ212 ↔ (b21 ↔ b22)

S13 ↔ (EQ113 ∧ EQ213) EQ113 ↔ (b11 ↔ b13)

EQ213 ↔ (b21 ↔ b23)

S23 ↔ (EQ123 ∧ EQ223) EQ123 ↔ (b12 ↔ b13)

EQ223 ↔ (b21 ↔ b23)

▶ Soft clauses:

{(S12; 1), (S13; 1), (¬S23; 1)}
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Experiments

MaxSat solver: MaxHS (implicit hitting set approach)

Protein sequencing data: similarity information over amino-acid
sequences

Compared with:
▶ Exact state-of-the-art IP solvers:
CPLEX, Gurobi

▶ Approximation algorithms for correlation clustering:
KwickCluster (KC), SDPC (semi-definite relaxation of the IP)

▶ SCPS: a dedicated spectral clustering algorithms for the
specific type of data
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Scalability of the Exact Approaches
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▶ Log encoding scales
further w.r.t.
number of datapoints
considered

▶ Scalability under
incomplete similarity
information

▶ (IP does not scale up
to the full set of point)
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measure

▶ user knowledge (UK) on a
golden clustering: Rand
index for MaxSat goes
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Heuristics for Planning
using MaxSat

[Zhang and Bacchus, 2012]
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Cost Optimal Planning

▶ An important extension of the classical planning problem is
the cost optimal classical planning problem.

▶ Classical planning involves full information: the state is
fully-known as are the effects and preconditions of all
actions.

▶ Want to transform the initial state into a state satisfying the
goal with a minimum cost sequence of actions.
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Planning Formalism

▶ Planning problem ⟨P, I,G,A, aCost⟩
1. Set of facts P (propositions)
2. A state S is a subset of P (a set of true facts)

Closed World: If p ∈ P is not in S then p is false in S.
3. Initial state I ⊆ P
4. Goal condition G ⊆ P

no Closed world for G: p ̸∈ G ̸→ ¬p
5. Actions A
6. Action cost function aCost: a ∈ A incurs cost aCost(a) > 0.
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Actions

▶ Each action a ∈ A is ⟨pre(a), add(a), del(a)⟩
▶ Preconditions pre(a); add effects add(a), and del(a) delete
effects.

▶ Actions map states S to new states a(S):
1. If pre(a) ̸⊆ S we can’t apply a to S (a is not executable in S).
2. If a is executable in S then

a(S) = S − del(a) ∪ add(a).
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Plans

▶ A plan Π = ⟨a1, a2, ..., an⟩ for a planning problem
⟨P, I,G,A, aCost⟩ is a sequence of actions from A such that:
1. S0 = I, S1 = a1(S0), . . ., Sn = an(Sn−1)
2. Each ai is executable in Si−1
3. G ⊆ Sn.

▶ Each action is applied in sequence. The actions sequence
must be executable, and the final state must satisfy the goal.
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Cost Optimal Plans

▶ The cost of a plan Π is the sum of aCost(ai) for all ai ∈ Π.
▶ Given a planning problem we want to find a plan Π for it
with minimum cost.
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Complexity

▶ Classical planning is PSPACE-complete, i.e., beyond the
complexity of MaxSat.

▶ This complexity arises from not knowing apriori the number
of actions in a plan.

▶ To find an optimal cost plan we would have to impose a
bound on the number of actions in the plan, and iterate on
this bound.

▶ The iteration is not simple, as when actions have varying
costs, a longer plan might be cheaper.

▶ One approach for directly using MaxSat was suggested by
Robinson et al. [Robinson, Gretton, Pham, and Sattar, 2010]
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Heuristic Search

▶ The most successful approach to solving planning problems
is heuristic search.

▶ When an admissible heuristic is used search becomes
A∗-search and we can find optimal plans.

▶ Now the problem becomes what is a good heuristic to use.
▶ A great deal of research has been done on this problem

▶ a number of different heuristics have been developed
▶ and deep results about the structure and relationships of
these heuristics have been proved
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Delete relaxed Heuristic

▶ If we remove all delete effects of all actions we get a new
planning problem: the delete relaxed planning problem.

▶ Given a state S and goal G, consider the cost of a optimal
delete relaxed plan for achieving G from S.

▶ This cost is a lower bound on the true optimal cost of moving
from S to G—it is an admissible heuristic.

▶ This heuristic is called h+

h+(S) = the cost of an optimal delete relaxed plan for
achieving G from S.
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h+

▶ h++ is a very informative heuristic
▶ Computing h+(S) for an arbitrary state S is still NP-Hard!
▶ But it can be approximated well using MaxSat!
▶ This was done by Zhang and Bacchus and embedded in an A∗
search engine for computing optimal plans.
1. Perform A∗ search for a plan.
2. At each new state S approximate h+(S) using a MaxSat solver.
3. Use the value returned by MaxSat to place S state on the
OPEN list.
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Computing Heuristics with MaxSat

▶ This worked surprisingly well (equaled the state-of-the-art at
the time).

▶ However, although more work is needed to actually advance
the state-of-the-art.

▶ In the meantime other heuristics have been developed (e.g.,
those based on solving linear-programs).

▶ On the other hand MaxSat solvers have made significant
improvements....
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MaxSat Encoding for Computing a Relaxed Plan

In delete relaxed planning, no action need be executed more than
once.
And once a state fact becomes true it remains true (monotonic
facts)
▶ For each state fact p define sup(p) to be the set of actions
that add p

sup(p) = {a|a ∧ p ∈ add(a)}
▶ For a state S define poss acts(S) to be the set of actions
executable in S

poss acts(S) = {a|pre(a) ⊆ S}
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MaxSat Encoding for Computing a Relaxed Plan
▶ A propositional variable ai for each action ai ∈ A.

ai true means that the relaxed plan includes action ai .
▶ For each goal g ∈ G with g ̸∈ S we have the hard clause∨

a∈sup(g)

a

Some action in the plan must add g.
▶ For each action a and for each p ∈ pre(a) ∧ p ̸∈ S we have
the hard clause

a→
∨

{a′|a′∈sup(p)}

a′

If a is in the plan then all of its preconditions must be
achieved (either by the initial state or by another action).

▶ For each action a we have soft clauses

(¬a, aCost(a))

If a is included in the plan we incur its cost.
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Computing a Relaxed Plan with MaxSat

▶ This encoding is actually an approximate encoding.
▶ Motivation is to allow fast MaxSat solving so that heuristic
computations can be done quickly.

▶ The problem with the encoding is that it admits cyclic plans.
▶ Plans where a cycle of actions support each other’s
preconditions, but the preconditions are not achieved by any
actions executable from the initial state.
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Computing a Relaxed Plan with MaxSat

▶ The technique of constraint generation can be used.
▶ The original MaxSat problem does not include all of the
constraints needed to solve the problem.

▶ When we obtain a solution, we check the solution to see if it
is valid.

▶ If it is valid, we have an optimal relaxed plan, and its cost is
exactly h+(S).

▶ If it is invalid we can compute a new clause that refines the
MaxSat encoding, and resolve the MaxSat problem for a
better solution.

▶ Each solution from the MaxSat encoding provides an
improved Lower Bound on h+(S)—so can be used as a
heuristic value.

▶ If we continue until we get a valid relaxed plan we know that
we have computed h+(S) exactly.
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Computing a Relaxed Plan with MaxSat

The new clause to generate is simple.
1. Let A be the actions in the returned (invalid) solution.
2. Let E = S
3. Find an action a ∈ A with pre(a) ⊆ E and add(a) ̸⊆ E
4. E = a(E)
5. Repeat 3-4 until no more actions can be found.
6. Let A′ be the set of actions executable E, that add something
new to E.

7. The new clause to add to the MaxSat encoding is∨
a∈A′

a
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Computing a Relaxed Plan with MaxSat

▶ At least one action in E must be included in any plan from S
to G.

▶ A′ is an action landmark.

▶ The process must eventually terminate.
▶ On termination we obtain a valid optimal relaxed plan.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Computing a Relaxed Plan with MaxSat

▶ This application illustrates that there are many ways to use
MaxSat.

▶ One need not set up the entire problem as a MaxSat instance.
▶ Instead MaxSat can be used as a component in a more
complex algorithm for solving the problem.
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Summary



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MaxSat
▶ Low-level constraint language:
weighted Boolean combinations of binary variables

▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ MaxSat solvers:

▶ build on top of highly efficient SAT solver technology
▶ various alternative approaches:
branch-and-bound, model-based, core-based, hybrids, ...

▶ standard WCNF input format
▶ yearly MaxSat solver evaluations

Success of MaxSat
▶ Attractive alternative to other constrained optimization
paradigms

▶ Number of applications increasing
▶ Solver technology improving rapidly
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Topics Covered

▶ Basic concepts — all you need to start looking further into
MaxSat

▶ Survey of currently most relavant solving algorithms
▶ core-based solvers
▶ SAT-IP hybrids based on the implicit hitting set approach
▶ branch-and-bound (still dominating approach to specific
problem types)

▶ Overview of recent application domain of MaxSat (somewhat
biased)

▶ ideas for how to encode different problems as MaxSat
▶ understanding some of the benefits of using MaxSat
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Further Topics
In addition to what we covered today:
MaxSat is an active area of research, with recent work on

▶ preprocessing [Argelich, Li, and Manyà, 2008a]

[Belov, Morgado, and Marques-Silva, 2013]

[Berg, Saikko, and Järvisalo, 2015b]

[Berg, Saikko, and Järvisalo, 2015a]

▶ How to simplify MaxSat instances to make the easier for
solver(s)?

▶ Parallel MaxSat solving [Martins, Manquinho, and Lynce, 2012]

[Martins, Manquinho, and Lynce, 2015]

▶ How employ computing clusters to speed-up MaxSat solving?

▶ Variants and generalization
▶ MinSAT [Li, Zhu, Manyà, and Simon, 2012]

[Argelich, Li, Manyà, and Zhu, 2013]

[Ignatiev, Morgado, Planes, and Marques-Silva, 2013b]

[Li and Manyà, 2015]
▶ Quantified MaxSat [Ignatiev, Janota, and Marques-Silva, 2013a]
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Further Topics
▶ instance decomposition/partitioning

[Martins, Manquinho, and Lynce, 2013]

[Neves, Martins, Janota, Lynce, and Manquinho, 2015]

▶ modelling high-level constraints [Argelich, Cabiscol, Lynce, and Manyà, 2012]

[Zhu, Li, Manyà, and Argelich, 2012]

[Heras, Morgado, and Marques-Silva, 2015]

▶ understanding problem/core structure
[Li, Manyà, Mohamedou, and Planes, 2009]

[Bacchus and Narodytska, 2014]

▶ Lower/upper bounds [Li, Manyà, and Planes, 2006]

[Lin, Su, and Li, 2008]

[Li, Manyà, Mohamedou, and Planes, 2010]

[Li, Manyà, Mohamedou, and Planes, 2010]

[Heras, Morgado, and Marques-Silva, 2012]

▶ symmetries [Marques-Silva, Lynce, and Manquinho, 2008]

▶ ...
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Applying MaxSat to New Domains

▶ How to model problem X as MaxSat?
▶ Developing compact encodings
▶ Redundant constraints via insights into the problem domain
▶ Representation of weights
▶ ...

▶ Understanding the interplay between encodings and solver
techniques

▶ Encodings: compactness v propagation
▶ Underlying core-structure of encodings
▶ The “best” solvers for current benchmark sets may not be best
for novel applications!

▶ Requires trial-and-error & in-depth understanding of solvers
and the problem domain
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Further Reading and Links

Surveys

▶ Handbook chapter on MaxSat: [Li and Manyà, 2009]

▶ Surveys on MaxSat algorithms: [Ansótegui, Bonet, and Levy, 2013a]

[Morgado, Heras, Liffiton, Planes, and Marques-Silva, 2013]

MaxSat Evaluation http://maxsat.ia.udl.cat
Overview articles: [Argelich, Li, Manyà, and Planes, 2008b]

[Argelich, Li, Manyà, and Planes, 2011]

http://maxsat.ia.udl.cat
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Thank you for attending!
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Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSat algorithms. Artif. Intell., 196:77–105, 2013a. doi:
10.1016/j.artint.2013.01.002. URL http://dx.doi.org/10.1016/j.artint.2013.01.002.
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Carlos Ansótegui, Frédéric Didier, and Joel Gabàs. Exploiting the structure of unsatisfiable cores in MaxSat. In Yang and
Wooldridge [2015], pages 283–289. ISBN 978-1-57735-738-4. URL
http://ijcai.org/papers15/Abstracts/IJCAI15-046.html.
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Kerstin Bunte, Matti Järvisalo, Jeremias Berg, Petri Myllymäki, Jaakko Peltonen, and Samuel Kaski. Optimal neighborhood
preserving visualization by maximum satisfiability. In Brodley and Stone [2014], pages 1694–1700. ISBN
978-1-57735-661-5. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8242.
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Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes. Resolution-based lower bounds in maxsat.

Constraints, 15(4):456–484, 2010. doi: 10.1007/s10601-010-9097-9. URL
http://dx.doi.org/10.1007/s10601-010-9097-9.
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