
GlucoRed
Siert Wieringa

Aalto University School of Science
Espoo, Finland

Abstract—This document describes the SAT solver Gluco-
Red as submitted the SAT Competition 2013. GlucoRed is
an implementation of the solver/reducer architecture based on
Glucose 2.1.

I. I NTRODUCTION

The solver GlucoRed discussed in this document imple-
ments the solver/reducer architecture [1], on top of the
solver Glucose 2.11 [2]. It uses two concurrently executing
threads, which are called theSOLVER and theREDUCER. The
SOLVER acts just like Glucose would, except for its interaction
with the REDUCER. The REDUCER’s sole task is to strengthen
the conflict clauses derived by theSOLVER. The interaction
between theSOLVER and theREDUCER is handled by passing
clauses through two shared-memory data structures called the
work set and theresult queue.

SOLVER REDUCER

work set

result queue

Fig. 1. The solver-reducer architecture

Whenever theSOLVER learns a clause it is pushed into the
work set. The work set has a limited capacity. If a clause is
pushed into the work set while it is full the new clause will
replace the oldest clause in the set. The task of theREDUCERis
to strengthen the clauses provided by theSOLVER through the
work set. The reducer always picks the “best” clause from the
work set as its next input. By setting the sorting metric for
the work set the user may define the “best” clause as either
the newest clause, the shortest clause or the clause with the
smallest LBD [2]. TheREDUCERtries to strengthen the clause
by an algorithm based on unit propagation and conflict clause
learning. If theREDUCERsuccessfully reduces the length of a
clause it places this new reduced clause in the result queue.

The SOLVER reads the clauses from the result queue, and
adds them to its learnt clause database. TheSOLVER can
decide to do this at any decision level, hence the introduction
of these “foreign” clauses may force the solver to backtrack.

II. RUNNING GLUCORED

The solver GlucoRed inherits all parameters and magic
constants from Glucose. Changing the value of any of these

1http://www.lri.fr/∼simon

parameters affects both theSOLVER and the REDUCER,
except for -ccmin which affects only theREDUCER. A
new parameter-solver-ccmin controls the conflict clause
minimization mode of theSOLVER. Both -ccmin and
-solver-ccmin have default value “2=deep”, which is
the same as in MiniSAT and Glucose. There are two other
new GlucoRed specific parameters. The first is the parameter
-work which is an integer> 1, and represents the capacity of
the work set. Its default value is the magic constant1000. The
second new parameter,-rsort, controls the sorting metric
used for the work set. Legal values are “0=off” (newest first),
“1=by size” (shortest first), “2=by LBD” (smallest LBD first).
The default value is2.

Although GlucoRed uses concurrency its performance re-
mains decent when it is run on a single physical CPU core.
This can be enforced for example by using the LINUX
commandtaskset. We therefore submit our solver to both
the sequential and parallel core solver tracks, for the bench-
marks Application SAT+UNSAT, and Hard-combinatorial
SAT+UNSAT.

III. I MPLEMENTATION DETAILS

GlucoRed is an extension of Glucose 2.1, which itself
is based on MiniSAT 2.2.02. All code is written in C++.
The code that is unique to GlucoRed uses POSIX threads.
The SOLVER and the REDUCER are both derived from
Glucose’s Solver class. GlucoRed was compiled to in-
clude MiniSAT’s internal simplifier as implemented in the
SimpSolver class. MiniSAT’s original Makefile was used
for compiling. Before submitting the code to the competition it
has been tested after compiling it for a 64-bit architectureusing
gcc versions 4.4.7 and 4.6.3. It should also work correctly
when compiled for a 32-bit architecture.

The version of GlucoRed submitted here differs from the
version used for the experiments in [1] by the addition of
MiniSAT’s simplifier, and a minor clean-up of the source code.

IV. GLUCORED-MULTI

GlucoRed-Multi is a simple multi-process portfolio of
multiple instances of GlucoRed. There is no clause sharing
between the different processes, but file parsing, initial iter-
ative unit propagation, and optional simplification are only
performed once. This is achieved by creating one instance of
the solver, parsing the input file and performing preprocessing,
and then forking the process multiple times.

2http://www.minisat.se



Compared to GlucoRed the solver GlucoRed-Multi has two
extra parameters,-nc and-ns. The parameter-nc controls
the number of instances of GlucoRed to run directly on
the input formula. The parameter-ns controls the number
of instances of GlucoRed to run on the formula obtained
by simplification using MiniSAT’s internal simplifier. The
GlucoRed-Multi solver was submitted to the same parallel
core solver tracks as the basic GlucoRed solver, with parameter
settings-nc=1 and-ns=3. Given those settings and an input
formula GlucoRed-Multi will do the following:

1) Create an instance of the ’GlucoRed’ solver
2) Parse the input formula
3) Fork a copy of the process, run solver in child process.
4) Run the simplifier in the parent process.
5) Fork two copies of the parent process, run the solver in

the parent process and both children.
The solver instance running in the parent process uses all

the default GlucoRed settings. The solver instances running in
the child processes also use the default settings, except from
making2% of their branching decisions at random and having
a unique random seed based on their process id.

V. GLUCORED+MARCH

GlucoRed+March is our submission to theopen track. Even
though the ranking in the open track is based on wall clock
time this submission aims for a decent performance regarding
CPU time. This is an experimental submission to see how
simple heuristics compete with complex portfolios. It is not
meant to be a serious contender for any awards.

GlucoRed+March runs a single copy of the solver
march rw3 [3] if all clauses of the input formula have the same
length, or if the formula contains clauses of exactly two differ-
ent lengths and the diameter of the variable interaction graph
(VIG) is at most 4. In all other cases GlucoRed+March runs
a single copy of GlucoRed. Checking whether all clauses
have the same length is a cheap way of determining that the
formula is likely to be a randomk-SAT formula. The use of
the diameter of the VIG was inspired by [4].

VI. AVAILABILITY

The source code for all submitted solvers is available from
the author’s web page4. The sources for MiniRed, a Mini-
SAT based solver/reducer implementation, are also provided
through that same page. Both GlucoRed and MiniRed are
licensed under MiniSAT’s original non-restrictive license.

REFERENCES

[1] S. Wieringa and K. Heljanko, “Concurrent clause strengthening,” inSAT,
ser. Lecture Notes in Computer Science, to appear 2013.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” inIJCAI, C. Boutilier, Ed., 2009, pp. 399–404.

[3] M. J. H. Heule, “Smart solving: Tools and techniques for satisfiability
solvers,” Ph.D. dissertation, Delft University of Technology, The Nether-
lands, 2008.

[4] P. Herwig, “Decomposing satisfiability problems,” Master’s thesis, Delft
University of Technology, The Netherlands, October 2006.

3http://www.st.ewi.tudelft.nl/sat
4http://users.ics.aalto.fi/swiering/solverreducer


