
GLUCOSE 2.3: Small improvements – Too finish

Gilles Audemard
Univ. Lille-Nord de France

CRIL/CNRS UMR8188
Lens, F-62307

audemard@cril.fr

Laurent Simon
Univ. Paris-Sud

LRI/CNRS UMR 8623 / INRIA Saclay
Orsay, F-91405

simon@lri.fr

Abstract
GLUCOSE is based on a the scoring scheme for
clause learning mechanism introduced in [Aude-
mard and Simon, 2009]. This short competition
report summarizes the techniques embedded in the
SAT challenge 2013 version of GLUCOSE1.

1 Introduction
In the so-called “modern” SAT solvers [Moskewicz et al.,
2001; Eén and Sörensson, 2003], a lot of effort has been
put in the design of efficient Boolean Constraint Propagation
(BCP), learning mechanisms, and branching heuristics, their
three main composants. In [Audemard and Simon, 2009], a
new simple measurement of learnt clause usefulness was in-
troduced, called LBD. This measure was no more based on
past clauses activities. It was proved so efficient that, this
year, we improved the overall architecture of GLUCOSE 1.0
(used in the SAT 2009 competition) to incorporate an even
more aggressive database cleanup policy. For this, we had to
incorporate a simple auto-adaptative threshold point beyond
of which clauses are deleted. We also incorporate a “sec-
ond chance” mechanism to keep bad clauses alive during one
more round of database cleanings, if it shows any interesting
improvement in its score.

This new version of GLUCOSE is also based on the ver-
sion 2.2 of MINISAT [Eén and Sörensson, 2003] (GLUCOSE
1.0 was based on the previous version of MINISAT). For a
more comprehensive description of GLUCOSE, please refer
to [Audemard and Simon, 2009] and our previous competi-
tion (2009, 2011, 2012) reports.

2 Literal Block Distance and Glue Clauses
During search, each decision is often followed by a large
number of unit propagations. We called the set of all liter-
als of the same level a “blocks” of literals. Intuitively, at the
semantic level, there is a chance that they are linked with each
other by direct dependencies. The underlying idea devel-
oped in [Audemard and Simon, 2009] is that a good learning
schema should add explicit links between independent blocks
of propagated (or decision) literals. If the solver stays in the

1Web page http://www.lri.fr/˜simon/glucose

same search space, such a clause will probably help reducing
the number of next decision levels in the remaining compu-
tation. Staying in the same search space is one of the recents
behaviors of CDCL solvers, due to phase-saving [Pipatsri-
sawat and Darwiche, 2007] and rapid restarts.

Definition 1 (Literals Blocks Distance (LBD)) Given a
clause C, and a partition of its literals into n subsets accord-
ing to the current assignment, s.t. literals are partitioned
w.r.t their decision level. The LBD of C is exactly n.

From a practical point of view, we compute and store the
LBD score of each learnt clause when it is produced. In-
tuitively, it is easy to understand the importance of learnt
clauses of LBD 2: they only contain one variable of the last
decision level (they are FUIP), and, later, this variable will be
“glued” with the block of literals propagated above, no matter
the size of the clause. We suspect all those clauses to be very
important during search, and we give them a special name:
“Glue Clauses”.

The LBD measure can be easily re-computed on the fly
when the clause is used during unit propagation. We keep
here the strategy used in GLUCOSE 1.0: we change the LBD
value of a clause only if the new value becomes smaller.

3 Agressive clauses deletion.. when possible
Before GLUCOSE 1.0, the state of the art was to let the clause
database size follow a geometric progression (with a small
common ratio of 1.1 for instance in MINISAT). Each time the
limit is reached, the solver deleted at most half of the clauses,
depending on their score (note that binary and glue clauses
are never deleted). In GLUCOSE 1.0, we already chose a very
slow increasing strategy. In this new version, we perform a
more accurate management of learnt clauses.

3.1 Dynamic threshold

References
[Audemard and Simon, 2009] G. Audemard and L. Simon.

Predicting learnt clauses quality in modern sat solvers. In
IJCAI, 2009.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. In SAT, pages 502–518, 2003.



[Moskewicz et al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff : Engineering an
efficient SAT solver. In DAC, pages 530–535, 2001.

[Nabeshima et al., ] Hidetomo Nabeshima, Koji Iwanuma,
and Katsumi Inoue. Glueminisat2.2.5. In SAT 2011 solvers
descriptions.

[Pipatsrisawat and Darwiche, 2007] K. Pipatsrisawat and
A. Darwiche. A lightweight component caching scheme
for satisfiability solvers. In SAT, pages 294–299, 2007.


