
gluH: Modified Version of gluclose 2.1
Chanseok Oh

New York University
New York, NY, USA

Abstract—This document describes the SAT solver ”gluH”
submitted to SAT Competition 2013, a modification of glucose
2.1, whose main feature is an addition of the generational
management of learnt clauses.

I. INTRODUCTION

gluH is a modified version of glucose [1], which is in turn
based on the well-known MiniSat [2], a typical CDCL solver
renowned for its compactness yet decent performance. The
main addition of gluH is its generational management of learnt
clauses, which periodically relegates dormant learnt clauses
to the second class, separating them from first-class learnts
recently created or actively participating in unit propagation.
The aim is to reduce the size of the database of the first-class
learnts to facilitate rapid propagations, and the idea is based on
the observation that often, clauses that have not been involved
at all in unit propagation for a long time have a fair chance
that they will be rarely useful for a while, if at all.

II. MAIN TECHNIQUES

The major difference between gluH and glucose is the
addition of the generational management of learnt clauses,
despite the implementation and its evaluation being still in
a primitive stage.

Aside from the normal learnt clause management, clauses
inactive for a long period of time are further classified as
dormants and demoted into the second class where they receive
less attention from propagation. Note that only dormant learnts
can ever be demoted; gluH still discards learnts immediately
and permanently during the regular reduction.

Basically, clauses classified as dormants are not always
inspected for possible unit propagation or conflict but on a
random basis. However, if they become involved in propa-
gation or conflict, they are promoted back to the first class
promptly.

As one can expect, the database of dormant learnts will
grow over time, and gluH uses the exact same logic to reduce
its size, i.e., based mainly on LBD [1] values.

III. MAIN PARAMETERS

The ratio of discarding learnts when performing database
reduction in original glucose, as is the case with MiniSat, is
roughly half. gluH reduces this ratio to prevent removing too
many useful clauses, since a considerable portion of learnts
will be relegated and excluded as dormants. For the dormant
learnt database, the ratio is half.

The criterion for classification of a dormant clause is
whether it has ever been involved in propagation or conflict

within a fixed number of last conflicts; the number is static
throughout the entire execution.

IV. IMPLEMENTATION DETAILS

Separate watcher lists are maintained for dormant learnts.
The normal watcher lists are accessed whenever a variable is
assigned, as usual, whereas the watcher lists for dormants are
accessed with a relatively small and fixed probability.

The task of classifying dormants is carried out periodically,
in synchronization with the regular database reduction. For the
purpose of classifying dormants, each learnt clause is assigned
a timestamp when created, which will be updated if the clause
is involved in unit propagation or conflict; the timestamp is the
accumulated number of conflicts so far.

If a clause is deemed to be dormant according to the above-
mentioned criterion, it is detached from the normal watcher
lists and added to the dormant lists.

V. SAT COMPETITION 2013 SPECIFICS

Two instances with different configurations have been sub-
mitted to SAT Competition 2013.

1) Using SatELite [3] as a front-end CNF preprocessor,
ratio of normal learnt reduction: 1/4, probability of
checking dormant watcher lists: 0.25, dormant learnt
criterion: silent for 20000 conflicts

2) Based on ”simp” version of MiniSat, ratio of normal
learnt reduction: 1/4, probability of checking dormant
watcher lists: 0.20, dormant learnt criterion: silent for
30000 conflicts

VI. AVAILABILITY

gluH adds no additional license to that of glucose.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in IJCAI, C. Boutilier, Ed., 2009, pp. 399–404.

[2] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, ser. Lecture
Notes in Computer Science, E. Giunchiglia and A. Tacchella, Eds., vol.
2919. Springer, 2003, pp. 502–518.

[3] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” in SAT, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.


