
Solvers with a Bit-Encoding Phase Selection Policy
and a Decision-Depth-Sensitive Restart Policy

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—To develop more efficient SAT solvers, recently we
proposed two new solving policies. One is called bit-encoding
phase selection policy, which aims at selecting more exactly the
polarity of a decision variable. Another is called a decision-depth-
sensitive restart policy, which determines when a restart begins,
depending on search depths. Based on the two new policies,
we developed a number of new SAT solvers, which are named
glue bit, minisat bit, gluebit lgl and gluebit clasp. This paper
describes briefly them.

I. INTRODUCTION

Most of modern solvers are based on Conflict Driven Clause
Learning (CDCL), which is a variant of DPLL procedure. In
general, CDCL-type solvers contain some important ingredi-
ents such as variable selection, phase ((also called polarity)
selection, restart, BCP (Boolean Constraint Propagation), con-
flict analysis, clause learning and its database maintenance
etc. Changing any ingredient has an impact on the whole
performance of solvers. This paper focuses on how to improve
the following two ingredients: restart and phase selection.
Recently, we proposed two new methods for optimizing a few
ingredients. One is called decision-depth-sensitive restart [1],
which is used to optimize the restart policy. Another is called
bit-encoding phase selection [2], which is used to improve the
quality of a polarity selection. Based on the two new policies,
we developed a few SAT solvers. Below we describe briefly
these new SAT solvers.

II. A BIT-ENCODING PHASE SELECTION POLICY

In [2], we introduced a new phase selection policy called
bit-encoding. The basic idea of this new policy is to let the
phase at each decision level correspond to a bit value of the
binary representation of an counter. Let n denote the value of
a counter, and the binary representation of n be

n = bk2k + bk−12k−1 + · · ·+ b12 + b0.
This phase selection policy stipulates that during the m-th
search period, the phase of a variable at the k-th decision
level is equal to bk. Every time a restart begins, the counter
n increases by one. Based on our experimental observation,
it is better to apply bit-encoding scheme on only the first 6
levels. In the detailed implementation, we use only the first 4
bits of the counter n, and let the phase of a variable at the
k-th decision level correspond to the (k modulo 4)-th bit of n,
where k < 6. When k ≥ 6, we use the phase selection policy
of Glucose [3]. Here is the C code of this phase selection.

// assume current decision level is k
if(k < 6) polarity[var]=(n >>(k %4))&1;
else polarity[var]=previous[var];

where previous[var] is used to save the previous phase and is
initially set to false. It is easy to see that the phase refresh
period of our policy is 16, while that of the other existing
policies are actually 1. The phase refresh period can be
considered as a metric to measure the diversity of a search
procedure. If the phase refresh period of a solver is two or
more, it is said to be diverse. Otherwise, it is said to be
non-diverse or uniform. So far, all the known phase selection
policies are uniform, whereas this new phase selection policy
is diverse.

III. A DECISION-DEPTH-SENSITIVE RESTART POLICY

Here we introduece a new notion called DDD(decision
depth decreasing). It is related to the Longest Decreasing
Subsequence (LDS). LDS may be defined as follows. Given
a sequence S, LDS(S) is the longest decreasing subsequence
with the following property: (1) it contains the first term of
S; (2) each term is strictly smaller than the one preceding
it. For example, assuming S={7, 11, 10, 9, 5, 6, 2}, then
LDS(S)={7, 5, 2}. In our solver, S is seen as a sequence
of conflict decision levels. The DDD of S is defined as the
number of terms in LDS(S), that is, DDD(S)=|LDS(S)|. For
the above example, DDD(S)=3. The larger the DDD value
is, the closer the goal is likely achieved. However, in many
cases, DDD=1. To get the larger DDD, we need to produce
many more conflicts. This is harmful to UNSAT instances.
Hence, for the restarts that are not postponed by Glucose
blocking strategy, we do not apply the DDD blocking strategy.
For the restart postponed by Glucose, if DDD<2, even if the
restart triggering condition is true, we continue to postpone
that restart. That is, our postponing interval is not smaller than
that of Glucose 2.1.

Another measure related to our new blocking strategy is the
average of maximal depths (denoted by AveMax D), which
may be defined as follows.

AveMax D =
1

8

9∑
i=2

max{conflict depths in i-th restart interval}

the reason why the above formula removes the first maximum
is because the first maximum has a greater deviation from
its subsequent ones in many instances. In general, on the
instances with small AveMax D, say AveMax D < 250, we
do not apply any blocking strategy. On the instances with large
AveMax D, say AveMax D > 1500, we remove the DDD
blocking strategy.

In addition to the restart triggering condition of Glucose
2.1, we embed such additional conditions as the AveMax D
test and the DDD blocking test. Here is the C++ code of the
new restart triggering strategy.
K=AveMax D < 250 && freeVars > 2500 ? 0.82 : 0.8;

assume learnt clause is to c;

sumLBD+= c.lbd(); conflicts++;

queueLBD.push(c.lbd());

if(queueLBD.isFull() && queueLBD.avg()*K > sumLBD/conflicts)

if(AveMax D < 250 || AveMax D > 1500 || !blocked || DDD > 1) {
queueLBD.clear();

restart();

}

To remove the postponing strategy on some instances, we
add the parameter AveMax D to our postponing algorithm.
Here is C++ code for the new postponing algorithm.

R=AveMax D ≥ 250 && AveMax D ≤ 900 && conflicts < 1500000 ?
1.38 : 1.4;
if (AveMax D ≥ 250 && freeVars > 5000){

queueTrail.push(trail.size());
if(queueLBD.isFull() && queueTrail.isFull() &&

trail.size() > R*queueTrail.avg()) {
queueLBD.clear();
blocked=true;

}
}

IV. SYSTEM DESCRIPTION OF SAT SOLVERS

Using two new technologies mentioned above, we devel-
oped a few new SAT solvers. Below we describe briefly them.

A. glue bit

glue bit is built on top of Glucose 2.1, but incorporates two
new policies given in previous two sections. It is a sequential
single-engine CDCL SAT solver, which runs SatElite as a
preprocessor. In glue bit, the bit-encoding phase selection
policy is used to enhance the ability of solving UNSAT
instances, whereas the decision-depth-sensitive restart policy
is used to enhance the ability of solving SAT instances. For
big instances, glue bit uses still the same as the solving
strategies of Glucose 2.1. This solver is submitted to the
sequential, application SAT+UNSAT and SAT track of the
SAT Competition 2013.

B. minisat bit{ u}
Minisat bit{ u} is a hack version of MiniSAT [5]. Except

for the pickBranchLit procedure, Minisat bit is the same

as MiniSAT 2.2.0. In the pickBranchLit procedure, Min-
isat bit{ u} adds the bit-encoding phase selection policy men-
tioned above. The phase selection policy of Minisat bit{ u}
is a little bit different from that of glue bit. In glue bit, the
decision level applying the bit-encoding scheme is limited
to 6, while in minisat bit, the decision level applying the
bit-encoding scheme is limited to 12. Furthermore, min-
isat bit{ u} has a bit-encoding sub-scheme. Every 4 levels
corresponds to a bit-encoding sub-scheme. When the decision
level is greater than 12, We use the same phase selection
policy as MiniSAT to select a polarity of decision variables.
Minisat bit is submitted to the sequential, MiniSAT hack-track
and application of the SAT Competition 2013. Minisat bit u
is submitted to certified UNSAT track.

C. gluebit lgl

gluebit lgl can be regarded as a hybrid solver or an interact-
ing solver using two SAT solving engines. It combines glue bit
and Lingeling 587 [4] that participated in SAT Competition
2011. Its main framework is based on glue bit. For big
instances, this solver switches to glue bit to solve them. For
other instances, glue bit and Lingeling run specified search
steps in turn, and exchanges intermediate results each other.
If a solver performs better than another solver, the subsequent
solving will be done by that solver with the better perfor-
mance. This solver is submitted to the sequential, application
SAT+UNSAT and SAT track of the SAT Competition 2013.

D. gluebit clasp

gluebit clasp is a hybrid solver combining glue bit and
clasp 2.0-R4092 (Gold Non-portfolio in SAT Competition
2011 crafted track). At the initial stage, we use glue bit to
solve an instance. This is similar to the role of a preprocessor.
Once glue bit has found the instance not suitable for it, it
aborts to solve and is switched to clasp. In some cases,
clasp is switched also to glue bit. This solver is submitted to
sequential, hard-combinatorial SAT+UNSAT and SAT track of
the SAT Competition 2013.

V. CONCLUSION

All the SAT solvers given in this paper are based on two new
policies. For glue bit, we conducted sufficient experiments,
while for the other new solvers, we did only a few experiments.
The results from the experiment on glue bit show that the
performance of glue bit was surprisingly good. We believe
that the other solvers containing glue bit will perform well.

REFERENCES

[1] Chen, J.C.: Decision-Depth-Sensitive Restart Policies for SAT Solvers,
submitted for publication, 2013.

[2] Chen, J.C.: A Bit-Encoding Phase Selection Strategy for Satisfiability
Solvers, submitted for publication, 2013.

[3] Audemard, G., Simon, L.: Refining Restarts Strategies for SAT and
UNSAT, 18th International Conference on Principles and Practice of
Constraint Programming (CP’12),pp. 118C-126 (2012)

[4] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,

[5] Sörensson, N., Biere, A.: Minimizing Learned Clauses, SAT 2009, LNCS
5584, pp. 237–243 (2009)

