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A Further Simulations
Figure 1 here gives a similar solver comparison to that of
Figure 4 in the actual paper, here under a 7200-second per-
instance time limit.
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Synthetic data, 100 instances, 7 nodes, 672 soft constraints
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Figure 1: Solver comparison under a 7200-second per-
instance time limit.

Figure 2 shows an example Dseptor run. The lower bound
of plain LMHS (cyan) increases quite slowly. The domain
specific cores boost the initial lower bound of Dseptor (black)
already to a much higher level. Afterwards the lower bound
(black) increases steadily. The upper bound of Dseptor (red)
corresponding to objective values of the found solutions,
reaches the optimum before 20 seconds: the optimal solution
is found quite early, indicating good anytime performance
here. The vertical lines (magenta, blue) show when soft con-
straints and edge absences are fixed using bounds based con-
straint hardening. The solution is proven optimal within 60
seconds here.

B Proof of Theorem 1
Here we give proofs of soundness of the problem-specific
core patterns presented in Table 1 in the actual paper. We
also give proofs of minimality of the patterns, i.e., that for
all subsets of the constraints, there are causal graphs that
satisfy them. Throughout we assume faithfulness, that is,
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Figure 2: An example run of Dseptor. See text for details.

a d-connecting walk implies dependence. We use the d-
separation definition given in the actual paper (allowing for
repeated nodes and edges in a walk).

B.1 Core 1
(i) X ⊥⊥ Z|S, (ii) X ⊥⊥ Y |S, (iii) X 6⊥⊥ Z|Y, S

Soundness Since there is no walk from X to Z condi-
tional on S, and there is one conditional on S, Y , the latter
d-connecting walks must be of the form X · · · → Y ← · · ·Z.
Let us consider a shortest of these. The first sub-walk from
X to Y violates (ii). Node Z cannot appear in this walk since
we took a shortest walk.

Minimality When S = ∅, all subsets can be satisfied.

without (i): Y X → Z

without (ii): X → Y ← Z

without (iii): X Y Z

B.2 Core 2
(i) X 6⊥⊥ Z|S, (ii) Y 6⊥⊥ Z|S,

(iii) X ⊥⊥ Y |S, (iv) X ⊥⊥ Y |Z, S



Soundness By (i) there is a shortest d-connecting walk
from X to Z, and by (ii) a shortest d-connecting walk from
Y to Z. Neither walk can have Z in between since these
are shortest walks. Now the combination would create a d-
connecting walk from X to Y , violating (iii), unless both
walks have arrows into Z. But then there is a walk from X to
Y additionally conditioning on Z, which violates (iv).

Minimality When S = ∅, all subsets can be satisfied.

without (i): X Y → Z

without (ii): X → Z Y

without (iii): X ← Z → Y

without (iv): X → Z ← Y

B.3 Core 3
(i) X 6⊥⊥ Z|Y, S, (ii) Y 6⊥⊥ Z|X,S,

(iii) X ⊥⊥ Y |S, (iv) X ⊥⊥ Y |Z, S

Soundness This core is a slight alteration of Core 2. By (i),
there is a shortest walk from X to Z. This cannot go through
Y due to (iii). By (ii) there must be a shortest walk from Y to
Z, it cannot go through X again due to (iii). The combination
of the walks is d-connecting either when conditioning or not
conditioning on Z.

Minimality
without (i): X Z ← Y

without (ii): X ← Z Y

without (iii): X ← Z → Y

without (iv): X → Z ← Y

B.4 Core 4
(i) Y 6⊥⊥ Z|S, (ii) X 6⊥⊥ Z|S,

(iii) Z ⊥⊥W |X,Y, S, (iv) X ⊥⊥ Y |Z, S, (v) X ⊥⊥ Y |W,S

Soundness Due to (i) there is a shortest d-connecting walk
from Y to Z and due to (ii) there is a shortest d-connecting
walk from Z to X . Due to (iv) and the fact that the walks are
shortest walks, the walks do not go through X , Y or Z. Due
to (iv), at least one of the walks must be out of Z. Without
sacrificing generality, assume it is the Y to Z walk (note that
X and Y can be switched in the core definition). Thus we
have Y · · · ← Z · · ·X . Due to (v), conditioning on W should
intercept this connection, hence W should be in between as
a non-collider. However, then there would be a d-connecting
walk between W and Z, violating (iii).

Minimality When S = ∅, all subsets can be satisfied.

without (i): X ← Z Y W

without (ii): X Z → Y W

without (iii): X ← Z →W → Y

without (iv): X → Z ← Y W

without (v): X ← Z → Y W

B.5 Core 5
(i) Y 6⊥⊥ Z|S, (ii) X 6⊥⊥ Z|S,

(iii) Z ⊥⊥W |Y, S, (iv) X ⊥⊥ Y |Z, S, (v) X ⊥⊥ Y |W,S

Soundness This core differs from Core 4 just by not con-
ditioning on X in (iii). Due to (i) there is a shortest d-
connecting walk from Y to Z and due to (ii) there is a shortest
d-connecting walk from Z to X . Due to (iv) and the fact that
the walks are shortest the walks, the walks do not go through
X , Y or Z. Due to (iv), one of the walks must be out of Z.
Due to (v), conditioning on W should intercept this connec-
tion, hence W should be in between as non-collider. How-
ever, then there would be a d-connecting walk between W
and Z, violating (iii) (remember that X and Y cannot appear
in between).

Minimality When S = ∅, all subsets can be satisfied.

without (i): X ← Z Y W

without (ii): X Z → Y W

without (iii): X ← Z →W → Y

without (iv): X → Z ← Y W

without (v): X ← Z → Y W

B.6 Core 6
(i) X 6⊥⊥ Y |Z, S (ii) Y 6⊥⊥ Z|X,W,S, (iii) W 6⊥⊥ Y |Z, S,

(iv) W ⊥⊥ X|Y, Z, S, (v) X ⊥⊥ Z|W,S

Soundness Consider a shortest d-connecting walk between
Y and X given Z, S satisfying (i). Since it is a shortest walk,
it does not go through Y or X . The walk does not go through
W , as otherwise there would be a walk from X to first W d-
connecting given Y,Z, S, violating (iv). In addition, the walk
does not go through Z, as otherwise there would be a walk
from X to first Z d-connecting given W,S, violating (v). Let
us denote this walk with P

{X,Y,Z,W}
X 6⊥⊥Y |Z,S .

Consider a shortest d-connecting walk between Y and Z
given X,W,S, satisfying (ii). Since it is a shortest walk, it
does not go through Y or Z. The walk does not go through
X , as otherwise there would be a walk from Z to first X d-
connecting given W,S, violating (v). Let us denote this walk
with P

{Y,Z,X}
Y 6⊥⊥Z|X,W,S .

Consider a shortest d-connecting walk between Y and W
given Z, S, satisfying (iii). Since it is a shortest walk, it does
not go through Y or W . The walk does not go through X ,
as otherwise there would be a walk from W to first X d-
connecting given Y, Z, S, violating (iv). Let us denote this
walk with P

{W,Y,X}
W 6⊥⊥Y |Z,S .

Concatenating P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S and P

{Y,Z,X}
Y 6⊥⊥Z|X,W,S at Y would

d-connect X and Z given W,S, violating (v), unless both are
into Y . Thus P {X,Y,Z,W}

X 6⊥⊥Y |Z,S and P
{Y,Z,X}
Y 6⊥⊥Z|X,W,S are into Y . Con-

catenating P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S and P

{W,Y,X}
W 6⊥⊥Y |Z,S at Y would d-connect



X and W given Y, Z, S, violating (iv), unless P
{W,Y,X}
W 6⊥⊥Y |Z,S is

out of Y . Thus P {W,Y,X}
W 6⊥⊥Y |Z,S is out of Y .

Then, let Q be the collider node nearest to Y on
P

{W,Y,X}
W 6⊥⊥Y |Z,S .

• If there is no Q, P
{W,Y,X}
W 6⊥⊥Y |Z,S must be into W as it is

out of Y , and P
{W,Y,X}
W 6⊥⊥Y |Z,S cannot go through Z. From

X , we can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y , P {W,Y,X}

W 6⊥⊥Y |Z,S to W ,

P
{W,Y,X}
W 6⊥⊥Y |Z,S back to Y and P

{Y,Z,X}
Y 6⊥⊥Z|X,W,S to Z to form a

walk that is d-connecting given W,S, violating (v).

• If Q = Z, then from X we can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y

and the subwalk of P {W,Y,X}
W 6⊥⊥Y |Z,S from Y to Q to form a

walk that is d-connecting given W,S violating (v).

• Otherwise Q ∈ S since P
{W,Y,X}
W 6⊥⊥Y |Z,S is d-connecting.

From X , we can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y , a subwalk of

P
{W,Y,X}
W 6⊥⊥Y |Z,S to Q (this is not through Z as Q is the first

collider) and back to Y , and finally P
{Y,Z,X}
Y 6⊥⊥Z|X,W,S to Z to

form a walk that is d-connecting given W,S, violating
(v).

When assuming that all constraints hold, we were able to de-
rive contradictions in all cases. Thus the constraints form a
core.

Minimality When S = ∅, all subsets can be satisfied.

without (i): X Z ← Y →W

without (ii): Z X ← Y →W

without (iii): W X → Y ← Z

without (iv): X → Y ← Z,W → Y

without (v): Z ← Y,X ← Y →W

B.7 Core 7
(i) X 6⊥⊥ Y |Z, S, (ii) Y 6⊥⊥ Z|X,W,S, (iii) W 6⊥⊥ Y |S,

(iv) W ⊥⊥ X|Y, S, (v) X ⊥⊥ Z|W,S

Soundness This is a slight alteration of Core 6, without
having Z in the conditioning sets for (iii) and (iv). Consider a
shortest d-connecting walk between Y and X given Z, S sat-
isfying (i). Since it is a shortest walk, it does not go through
Y or X . The walk does not go through W or Z, as otherwise
there would be a walk from X to first W or Z violating either
(iv) or (v). Let us denote this walk with P

{X,Y,Z,W}
X 6⊥⊥Y |Z,S .

Consider a shortest d-connecting walk between Y and Z
given X,W,S, satisfying (ii). Since it is a shortest walk, it
does not go through Y or Z. The walk does not go through
X , as otherwise there would be a walk from Z to first X d-
connecting given W,S, violating (v). Let us denote this walk
with P

{Y,Z,X}
Y 6⊥⊥Z|X,W,S .

Consider a shortest d-connecting walk between Y and W
given S, satisfying (iii). Since it is a shortest walk, it does

not go through Y or W . The walk does not go through X ,
as otherwise there would be a walk from W to first X d-
connecting given Y, S, violating (iv). Let us denote this walk
with P

{W,Y,X}
W 6⊥⊥Y |S .

Concatenating P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S and P

{Y,Z,X}
Y 6⊥⊥Z|X,W,S at Y would

d-connect X and Z given W,S, violating (v), unless both are
into Y . Thus P {X,Y,Z,W}

X 6⊥⊥Y |Z,S and P
{Y,Z,X}
Y 6⊥⊥Z|X,W,S are into Y . Con-

catenating P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S and P

{W,Y,X}
W 6⊥⊥Y |S at Y would d-connect

X and W given Y, S, violating (iv), unless P
{W,Y,X}
W 6⊥⊥Y |S is out

of Y . Thus P {W,Y,X}
W 6⊥⊥Y |S is out of Y .

Then, let Q be the collider node nearest to Y on P
{W,Y,X}
W 6⊥⊥Y |S

or node Z, whichever is nearest to Y on P
{W,Y,X}
W 6⊥⊥Y |S .

• If there is no Q, P {W,Y,X}
W 6⊥⊥Y |S must be into W as it is out

of Y , and P
{W,Y,X}
W 6⊥⊥Y |S cannot go through Z. From X , we

can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y , P {W,Y,X}

W 6⊥⊥Y |S to W , P {W,Y,X}
W 6⊥⊥Y |S

back to Y and P
{Y,Z,X}
Y 6⊥⊥Z|X,W,S to Z to form a walk that is

d-connecting given W,S, violating (v).

• If Q = Z, from X we can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y and

the subwalk of P
{W,Y,X}
W 6⊥⊥Y |S from Y to Q forming a d-

connecting walk given W,S violating (v).

• Otherwise Q ∈ S since P
{W,Y,X}
W 6⊥⊥Y |S is d-connecting.

From X , we can take P
{X,Y,Z,W}
X 6⊥⊥Y |Z,S to Y , a subwalk of

P
{W,Y,X}
W 6⊥⊥Y |S to Q and back to Y (this is not through Z),

and finally P
{Y,Z,X}
Y 6⊥⊥Z|X,W,S to Z to form a walk that is d-

connecting given W,S, violating (v).
When assuming that all constraints hold, we were able to de-
rive contradictions in all cases. Thus the constraints form a
core.

Minimality When S = ∅, all subsets can be satisfied.

without (i): X Z ← Y →W

without (ii): Z X ← Y →W

without (iii): W X → Y ← Z

without (iv): X → Y ← Z,W → Y

without (v): Z ← Y,X ← Y →W


