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Abstract

New applications for autonomous robots bring them into
the human environment where they are to serve as helpful
assistants to untrained users in the home or office, or work
as capable members of human-robot teams for security, mil-
itary, and space efforts. These applications require robots
to be able to quickly learn how to perform new tasks from
natural human instruction, and to perform tasks collabora-
tively with human teammates.

Using joint intention theory as our theoretical frame-
work, our approach integrates learning and collaboration
through a goal based task structure. Specifically, we use col-
laborative discourse with accompanying gestures and so-
cial cues to teach a humanoid robot a structurally com-
plex task. Having learned the representation for the task,
the robot then performs it shoulder-to-shoulder with a hu-
man partner, using social communication acts to dynami-
cally mesh its plans with those of its partner, according to
the relative capabilities of the human and the robot.

1. Introduction

Robots will inevitably become a part of our daily lives.
Our research concerns how people will expect and want to
interact with them. For example, efforts are underway in re-
search labs around the world to put robots into homes assist-
ing the elderly (e.g., [20]) and into space working in robot-
astronaut teams [2]. As robots move into our natural envi-
ronment, it is easy to envision situations that afford the need
for efficient task learning and collaboration. Consider work-
ing together with a robot on a maintaining a flower garden,
fixing a car, or cooking a large dinner. In each of these sce-
narios, one would neither want to wholly relinquish control
of the process nor use the robot as a simple-minded tool that
needs to be guided each step of the way. The robot should
rather act as a partner that can be taught a complex goal-
oriented procedure and then effectively collaborate with the
human providing appropriate assistance in performing the
learned task.

If the robot does not already know how to do a given
task, a person must be able to teach the robot in a natu-
ral and intuitive manner. The robot, in turn, must be able
to quickly learn the new skill from the human from only
a few trials (in dramatic contrast to many statistical learn-
ing approaches that require hundreds or thousands of trials).
Furthermore, once a new skill is learned, the robot should
then be competent in its ability to provide assistance; under-
standing how to perform the task independently as well as
how to perform it in partnership with a human.

Our aim is to be able to teach a robot a structurally com-
plex task that can later be performed collaboratively with a
human. Ideally, such robots will be as fast and as easy to
work with, communicate with, and teach as a person. This
paper details our work towards supplying our expressive hu-
manoid robot, Leonardo, with human-centered learning and
collaborative abilities.

2. Theoretical Framework

In considering what characteristics a robot must have to
effectively work with a human partner, we view both the
problem of learning and that of collaborating in terms of di-
alog and joint intention theory.

2.1. Learning and Joint Intention Theory

Human-style tutelage is a social and a collaborative pro-
cess [10, 16] and usually takes the form of a dialog, a fun-
damentally cooperative activity [11]. To be a good instruc-
tor, one must maintain an accurate mental model of the
learner’s state (e.g., what is understood so far, what remains
confusing or unknown) in order to appropriately structure
the learning task with timely feedback and guidance. The
learner (robot or otherwise) helps the instructor by express-
ing their internal state via communicative acts (e.g., expres-
sions, gestures, or vocalizations that reveal understanding,
confusion, attention, etc.). Through reciprocal and tightly
coupled interaction, the learner and instructor cooperate to
help both the instructor to maintain a good mental model of
the learner, and the learner to leverage from instruction to



build the appropriate models, representations, and associa-
tions.

Cohen et al. analyzed task dialogs, where an expert in-
structs a novice assembling a physical device, and found
that much of task dialog can be viewed in terms of joint in-
tentions. Their study identified key discourse functions in-
cluding: organizational markers that synchronize the start
of new joint actions (”now,” ”next,” etc.), elaborations and
clarifications for when the expert believes the apprentice
does not understand, and confirmations establishing the mu-
tual belief that a step was accomplished [6].

We have given our robot a number of social and ex-
pressive skills that contribute to the robot’s effectiveness
in learning through collaborative discussion. For example,
joint attention is established both on the object level and on
the task structure level. The robot uses subtle expressions
to indicate to the human tutor when he is ready to learn
something new, and his performance of taught actions pro-
vides the tutor with immediate feedback about comprehen-
sion of the task. Envelope displays such as gaze aversion,
eye contact and subtle nods are used to segment a complex
task learning structure in a natural way for the tutor. Addi-
tionally, sequencing keywords, like those mentioned above,
provide structure to the task.

2.2. Collaboration and Joint Intention Theory

Joint intention theory also motivates our approach to task
collaboration. In any collaboration, agents work together as
a team to solve a common problem. Team members share
a goal and a common plan of execution. Thiscollabora-
tive plandoes not reduce to the sum of the individual plans
[12], but is an interplay of plans inspired and affected by a
joint intention.

Several models have been proposed to explain how joint
intention relates to individual intention. Searle argues that
collective intentions are not reducible to individual inten-
tions of the agents involved, and that the individual acts ex-
ist solely in their role as part of the common goal [24]. Brat-
man’s analysis of Shared Cooperative Activity (SCA) intro-
duces the idea of meshing singular sub-plans into a joint ac-
tivity [4]. In this work, we generalize this concept to a pro-
cess of dynamically meshing sub-plans.

Bratman also defines certain prerequisites for an activ-
ity to be considered shared and cooperative: he stresses the
importance ofmutual responsiveness, commitment to the
joint activity andcommitment to mutual support. Cohen et
al. support these guidelines and provide the notion ofjoint
stepwise execution[5, 18]. Their theory also predicts that an
efficient and robust collaboration scheme in a changing en-
vironment commands an open channel ofcommunication.
Sharing information through communication acts is criti-
cal given that each teammate often has only partial knowl-

Figure 1. Leonardo performs the steps as he
learns them providing the human tutor with
valuable error-correcting insight in real time.

edge relevant to solving the problem, different capabilities,
and possibly diverging beliefs about the state of the task.

3. Experimental Platform

The physical platform for our research is Leonardo
(“Leo”), a humanoid robot with 65 degrees of freedom that
has been specifically designed for social interaction us-
ing a range of facial and body pose expressions (see Fig-
ure 1). Currently, Leo does not speak and therefore relies
on gestures and facial expression for social communica-
tion. The robot’s underlying software architecture consists
of the following subsystems: speech recognition and pars-
ing, vision and attention, cognition and behavior, and motor
control.

3.1. Perceptual Systems

The robot has both speech and visual inputs. The vision
system parses objects from the visual scene such as humans
and the robot’s toys (e.g., buttons that it can press). These
perceptions are sent to the cognitive system along with ob-
ject attributes (e.g., color, location). The vision system also
recognizes pointing gestures and uses spatial reasoning to
associate these gestures with their object referent.

The speech understanding system is a Lisp parser based
on the NRL Nautilus project [22] with a ViaVoice front end.
The system has a limited grammar to facilitate accuracy
of the voice recognition. Upon receiving phrases from Vi-
aVoice, the speech understanding system parses these into
commands that are sent to the cognitive system.

3.2. Cognitive System

The cognitive system extends theC5Marchitecture, a
recent version of theC4 system described in [3]. It re-
ceives a continuous stream of symbols from the vision and



speech understanding systems and integrates these into co-
herent beliefs about objects in the world. The perceptual at-
tributes of a given object are merged together and kept in
one structure. For example, information about a button is
merged with the corresponding features of location, color
and ON/OFF state to form a coherent belief about that but-
ton. These belief structures can also be manipulated inter-
nally, allowing the cognitive system to add information to
its beliefs about the objects in the world (e.g., associating
a label with a particular object so that the human can re-
fer to it by name).

On top of these existing processing modules, we have
added a set of higher-level cognitive capabilities: goal
based decision making, hierarchical task representa-
tion, task learning, and task collaboration. These systems
are described in the following sections.

4. Task and Goal Representation

Humans are biased to use an intention-based psychol-
ogy to interpret an agent’s actions [7]. Moreover, it has re-
peatedly been shown that we interpret intentions and actions
based on goals rather than specific activities or motion tra-
jectories [26, 9, 1]. A goal-centric view is particularly cru-
cial in a collaborative task setting, in which goals provide a
common ground for communication and interaction. All of
this suggests that goals and a commitment to their success-
ful completion should be central to task representation, both
in learning and collaboration.

4.1. Goal Types

To support this idea, we have extended the notion of the
C5Maction-tupledata structure. An action-tuple is a set of
preconditions, executables, and until-conditions [3]. Tasks
and their constituent actions are variations of this action-
tuple structure with the added notion ofgoals.

As the robot learns a new task, it must learn the goals
associated with each action, each sub-task, and the overall
task. The system currently distinguishes between two types
of goals: (a)state-change goals that represent a change
in the world, and (b)just-do-it goals that need to be
executed regardless of their impact on the world. These two
types of goals differ in both their evaluation as precondi-
tions and in their evaluation as until-conditions. As part of
a precondition, astate-change goal must be evaluated
before doing the activity to determine if it is needed. As an
until-condition, the robot shows commitment towards the
state-change goal in trying to execute the action, over
multiple attempts if necessary, until succeeding to bring
about the desired state. This commitment to the successful
completion of goals is an important aspect of intentional be-
havior [4, 5]. Conversely, ajust-do-it goal will lead to

an action regardless of the world state, and will only be per-
formed once.

4.2. Hierarchical Tasks

Tasks are represented in a hierarchical structure of ac-
tions and sub-tasks (recursively defined in the same fash-
ion). Since tasks, sub-tasks, and actions are derived from
the same action-tuple data structure, they are easily used in
a unified way, naturally affording a tree representation for
tasks.

A task also encodes the constraints among its actions.
Currently we utilize only sequential constraints, but the con-
straint representation is generic and others could be added
in the future.

4.3. Hierarchical Goals

When learning a task, a goal is associated with the over-
all task in addition to each of the constituent actions. Over-
all task and sub-task goals are distinct from the mere con-
junction of the goals of their actions and sub-tasks, and are
learned separately.

When executing a task, goals as preconditions and until-
conditions of actions or sub-tasks manage the flow of deci-
sion making throughout the task execution process. Over-
all task goals are evaluated separately from their constituent
action goals to determine whether they need to be executed,
as well as checking for completion of a task.

One advantage of this top-level evaluation approach is
that it is more efficient than having to poll each of the con-
stituent action goals explicitly. Moreover, this goal-oriented
implementation supports a more realistic groundwork for
intentional understanding—i.e., to perform the task in a
way that accomplishes theoverall intent, rather than just
mechanically going through the motions of performing the
constituent actions.

5. Task Manager Module

The task managerarbitrates between task learning and
execution. It listens for a task-related request from the hu-
man partner. These can be in the form of: “Leo, dotask x”
or “Let’s do task x”. They can also be questions: “Leo, can
you dotask x?”. Upon encountering such a request is, sev-
eral scenarios can occur: Leo may either know or not know
how to perform a task, and the request may be to perform
solo or collaboratively. The task manager distinguishes be-
tween these scenarios and starts the proper execution mod-
ule, answering the person (using head nods and shakes) if
the request was a question.

The task manager maintains a collection of known tasks.
If Leo is asked to do a task on his own that he already



knows, then the task manager executes it by expanding the
task’s action and sub-tasks onto afocus stack(in a similar
way to [13]). The task manager proceeds through the ac-
tions on the stack popping them as they are done or, for a
sub-task, pushing its constituent actions onto the stack.

The major contribution of this work, however, concerns
the other two scenarios, learning (Section 6) and collabora-
tion (Section 7). If Leo is asked to do a task that he does
not know how to perform, a task learning module is instan-
tiated to learn the task. Alternatively, if collaborative task
execution is requested, the task manager starts the collabo-
ration module for that task.

6. Learning in Collaboration with People

There are numerous examples where machine learning is
viewed as a search problem, finding an optimal solution to a
defined problem. We strongly believe that framing the learn-
ing problem in such a way does not take advantage of the
wealth of structure and information provided by interaction
with a human tutor. We frame the machine learning prob-
lem as a collaborative dialog between the human and the
robot learner. In our approach, learning takes place through
guided experience. This allows the robot to learn a complex
task structure quickly from few examples.

As the human teacher leads the robot through a task, the
use of sequencing words naturally indicates possible con-
straints between task steps. Since Leo shows his under-
standing of a newly learned sub-task or action by actually
performing it (Figure 1), failure to comprehend an action or
its goal is easily and naturally detected by the tutor. To com-
plement this, we are currently working to incorporate feed-
back for correcting a task representation or emphasizing a
particular segment. In a typical teacher-student interaction,
errors are corrected just as they happen in the flow of the in-
teraction; therefore, this type of error correction is likely to
be the most natural for the human teacher.

Leo starts the learning process by indicating that he does
not know a requested task, shrugging his shoulders and
making a confused facial expression. At this stage the hu-
man walks the robot through the components of the task,
building a new task from his set of known actions and tasks.
While in task learning mode, the learning module continu-
ally pays attention to what actions are being performed, en-
coding the inferred goals with these actions. When encod-
ing the goal state of a performed action or task, Leo com-
pares the world state before and after its execution. In the
case that this action or task caused a change of state, this
change is taken to be the goal. Otherwise, the goal is as-
sumed to be of thejust-do-it type. This produces a hi-
erarchical task representation, where a goal is encoded for
each individual part of the task as well as for the overall

task. When the human indicates that the task is done, it is
added to the task manager’s collection of known tasks.

This method of goal classification makes some arbitrary,
though reasonable, assumptions as to the priority of world
state over action. We are currently working on a more flexi-
ble method to learn a more general representation for goals
(see: Section 9).

Learning is handled recursively, such that a sub-task can
be learned within a larger task. If the task manager receives
an additional unknown sub-task request, while learning a
task, the current learning process is pushed onto a stack and
an additional learning thread is started. Once the sub-task
learning is complete, it is popped from the stack and its re-
sulting task is added both to the previous learning process
and to the task manager’s list of known tasks. The original
learning process continues, with the newly learned sub-task
as part of its task representation.

7. Performing in Collaboration with People

Task collaboration is the joint execution of a common
plan. When Leonardo is performing a task alone, he pro-
gresses through the task tree until the task’s goals are
achieved. When collaborating with a human partner, many
new considerations come into play. For instance, within a
collaborative setting, the task can (and should) be divided
between the participants, and the collaborator’s actions need
to be taken into account when deciding what to do next. Mu-
tual support is provided in the case that one participant is
unable to perform a certain action. Finally, a clear chan-
nel of communication is used to synchronize mutual beliefs
and maintain common ground for intentions and actions.

Our implementation supports these considerations as
Leonardo participates in a collaborative discourse, pro-
gressing towards achieving the joint goal. In order to make
the collaboration natural for people, we have implemented a
number of the mechanisms that humans use when they col-
laborate. In particular, we have focused on communication
skills to support joint activity (utilizing gestures and facial
expressions), dynamic meshing of sub-plans and turn tak-
ing.

7.1. Dynamic Meshing of Sub-plans

Leo’s intention system is a joint-intention model, which
dynamically assigns tasks between the members of the col-
laboration team. Leo derives his intentions based on a dy-
namic meshing of sub-plans according to his own actions
and abilities, the actions of the human partner, his under-
standing of the common goal of the team, and his assess-
ment of the current task state.

At every stage of the interaction, either the human should
do her part in the task or Leo should do his. Before attempt-



ing an element of the task, Leo negotiates who should com-
plete it. While usually conforming to this turn-taking ap-
proach, our system also supports simultaneous action, in
which the human performs an action while Leo is work-
ing on another part of the task. If this is the case, Leonardo
will re-evaluate the goal state of the current task focus, and
might decide to no longer keep this part of the task on his
list of things to do.

7.2. Social Communication and Mutual Support

¿From the theoretical work mentioned in Section 2.2, we
see that cooperative behavior is an ongoing process of main-
taining mutual beliefs, sharing relevant knowledge, coordi-
nating action, and demonstrating commitment to the shared
activity. To support this, we have implemented a variety of
gestures and other social cues to communicate the robot’s
internal state during collaboration with the human — such
as who the robot thinks is doing an action, or whether the
robot believes the goal has been met. For instance, when the
human partner changes the state of the world, Leo acknowl-
edges this by glancing briefly towards the area of change
before redirecting his gaze to the human. This post-action
glance reassures the human that the robot is aware of what
she has done, even if it does not advance the task.

If the human’s simultaneous action meets a sub-task
goal, Leo will glance at the change and give a small con-
firming nod while looking back at the human. Similarly,
Leo uses subtle nods while looking at his partner to indi-
cate when he thinks he brought about the completion of a
task or sub-task.

This sort of social communication is particularly valu-
able when the human completes part of the joint plan in par-
allel to Leo performing a different part of the task, or when
the human unexpectedly changes something in the world.
The robot’s behavior plays a crucial role in establishing mu-
tual beliefs between the teammates on the progress of the
shared plan.

Additionally, Leo has the ability to evaluate his own ca-
pabilities. If the robot is able to complete the task element,
he will offer to do so, but allow the human partner to over-
ride this offer (either verbally or by acting on the current
goal). Conversely, whenever the robot believes that he can-
not successfully perform an action, he will ask the human
for help. Since Leonardo does not have speaking capabili-
ties yet, he indicates his willingness to perform an action by
pointing to himself, and adopting an alert posture and fa-
cial expression (Figure 2(a)). Analogously, when detecting
an inability to perform an action assigned to him, Leo’s ex-
pression indicates helplessness, as he gestures toward the
human in a request for her to perform the intended action
(Figure 2(b)). In addition to this gesture, Leo shifts his gaze

(a) Leo negotiates his turn by
gesturing towards himself.

(b) Leo asking for help by
gesturing towards the hu-
man.

Figure 2. Using communicative gestures.

between the problematic object and the human to direct her
attention to what it is that he needs help with.

8. Results and Evaluation

We have tested Leonardo’s learning and collaboration
abilities on several tasks comprised of simple dialogs and
object manipulation skills. In our experimental scenario,
there are three buttons in front of Leonardo. The buttons can
be pressed ON or OFF which changes their color by switch-
ing an LED on or off. Occasionally, a button does not light
up when pressed. In our task scenario, this is considered a
failed attempt. We designed the tasks to include a number
of sequenced steps, such as turning a set of buttons ON and
then OFF, and turning a button ON as a single action or as a
sub-task of turning all of the buttons ON. The task set rep-
resents both simple and complex hierarchies, and has tasks
with bothstate-change andjust-do-it goals.

8.1. Learning the Button-Task with a Human

In our trials, we were able to teach Leonardo all of
the above mentioned types of tasks. The robot demon-
strated his understanding of nested action by recalling
tasks which had been learned as sub-tasks of larger ac-
tivities. He correctly associatedstate-change goals
and just-do-it goals while learning new tasks. This
was demonstrated in Leo’s understanding of when to per-
form an action and for how long to persist based on its
initial success.

In these learning trials, Leo’s gestural cues provided
much-needed feedback that enabled the tutor to realize
when the robot successfully understood a task and its place
in the larger context. Figure 3 diagrams a typical teaching
interaction in which Leo was taught to turn two buttons ON
and then OFF again.



Figure 3. Learning to turn 2 buttons ON and OFF, and the progressive task and goal representation.

8.2. Performing the Button-Task with a Human

In the collaboration stage of our trials, the robot dis-
played successful meshing of sub-plans based on the dy-
namic state changes of the shared task. These changes were
brought about by the robot’s own successes and failures as
well as the human partner’s actions. Leo’s gestures and fa-
cial expressions provided a natural collaborative environ-
ment, informing the human partner of Leo’s understanding
of the task state and his attempts to take or relinquish his
turn.

Leo used subtle nods when he thought he completed a
task or sub-task. For instance, in the case of the buttons-
ON-then-OFF task, he gave an acknowledgment nod to the
human after completing the buttons-ON sub-task and be-
fore starting the buttons-OFF sub-task.

Leo’s communicative gestures proved particularly valu-
able when simultaneous action broke the turn-taking proto-
col. For example, if the human’s simultaneous action met
a task goal, such as turning the last button ON during the
buttons-ON task, Leo glanced at the change and gave a
small confirming nod to the human.

Additionally, Leo’s need for help displayed his under-
standing of his own limitations, and his use of gaze and pos-
ture served as natural cues for the human to take appropri-
ate action in each case.

See Figure 4 for a transcript of a typical collaborative in-
teraction.

9. Discussion and Future Work

In viewing human-robot interaction as fundamentally a
collaborative process and designing robots that communi-
cate using natural human social skills, we believe we will
achieve robots that are both intuitive for humans to interact
with and that are better equipped to take advantage of our
socially structured world. In both collaboration and learn-
ing we are utilizing acts that support collaborative dialog,
such that the robot is continually communicating its inter-
nal state to the human partner, maintaining a mutual be-
lief about the task at hand. We have presented our ability
to teach a task to a robot through the course of collabora-
tive dialog, and the ability to coordinate joint intentions to
perform the learned task collaboratively. This section de-
tails our contributions in relation to prior research followed
by plans for future work.

Discourse analysis and collaborative dialog theory have
been used in plan recognition [19] and in tutorial systems
[23]. Our work, however, takes a different view and uses a
collaborative dialog framework for having the robot learn
from a human rather than tutor a human.

Not only is dialog a natural form of interaction for the
human, it can also provide structure and guidance to the
learning process. Other methods that look at robots that
learn from people include learning by demonstration or ob-
servation [25, 15], and instruction as programming with nat-
ural language techniques [17]. [21] is the most similar work
to our own and explores a tutelage-inspired paradigm where
a robot learns a sequentially structured task from human
demonstration. The human uses short verbal commands
to frame the interaction into instruction or demonstration



“Leo, let’s do task Buttons On & Off"

“OK, you go”

Human presses button 2 simultaneously to Leo's action

Leo looks at the buttons

Leo presses button 1, looking at it

Leo points to himself

Leo acknowledges that he understands the task, and visibly 
establishes mutual belief on the task’s initial conditions.

He can do the first part of the task, and suggests doing so.

Looking away from the partner while operating establishes 
turn taking boundaries.

Leo looks back at his partner

Leo looks at button 2 looks back at the human

Gaze shift is used to signal end of turn

Glance aknowledges partner’s simultaneous action

Leo nods shortly
Nod creates mutual belief as to the perceived end of the 
subtask

Press 1 Press 2Press 2 Press 1

  The transcript on the left describes the 
collaborative execution of the shaded part in the 
"Buttons On & Off" task depicted above. 
  It offers a sense of the joint intention and 
communicative skills fundamental to the 
collaborative discourse stressed in our 
approach.

On & Off

On Off

Figure 4. Collaborating on a hierarchical task.

episodes, and provides feedback to correct the robot’s task
model. Their work is interactive and follows a more famil-
iar style of teaching for humans.

Our work goes further to model and represent learning as
a collaborative process that leverages human social cues and
gestures, tightly coupled turn taking, and dialog. By ver-
bally instructing Leonardo, leading him through the desired
task and using gestures to direct attention, this turn tak-
ing framework lets the human instructor model the robot’s
learning progress at each step. This in turn allows the hu-
man instructor to provide additional structure that is more
appropriate and relevant to the robot’s learning state at each
step, thereby making the robot’s learning process faster and
more efficient.

The problem of shoulder-to-shoulder collaboration with
a robot is a relatively unexplored field. It is important to
distinguish human-robot collaboration from other forms of
human-robot interaction. Namely, whereas interaction en-
tails actingon someone or something else, collaboration is
inherently workingwith others [4, 12].

Much of the current work in human-robot interaction is
thus aptly labeled given that the robot (or team of robots)
is often viewed as an intelligent tool capable of some au-
tonomy that a human operator commands (perhaps using
speech or gesture) to perform a task [14, 22]. This master-
slave arrangement does not capture the sense of partnership
that we mean by workingjointly with others as in the case
of collaboration.

Human robot collaboration has been studied most no-
tably using autonomous vision-based robotic arms [6], al-
beit without a social communicative aspect. Other work
studies the collaboration between teleoperated humanoids,

such as NASA JSCs Robonaut [2] and human teammates.
In other teleoperation work, partnership has been consid-
ered in the form ofcollaborative control(e.g. [8]), allow-
ing a robot to ask a human for help in resolving perceptual
ambiguities. The human is used by the robot as a remote
source of information, but not as a peer on a shared task.
We propose a different notion of partnership: that of a so-
cially adept autonomous robot working with a human as a
member of a collocated team to accomplish a shared task.

In realizing this goal, we believe that robots must be able
to cooperate with humans as capable partners and commu-
nicate with them intuitively. Developing robots with social
skills and understanding is a critical step towards this goal.
To provide a human teammate with the right assistance at
the right time, a robot partner must not only recognize what
the person is doing (i.e., his observable actions) but also un-
derstand the intentions or goals being enacted. This style
of human-robot cooperation strongly motivates the devel-
opment of robots that can infer and reason about the men-
tal states of others within the context of the interaction they
share. Our goal-driven joint intention based framework is
aimed at this promise.

We are currently pursuing a number of extensions to the
work presented here. In the learning stage, we are work-
ing to give the system a more flexible representation of the
possible goals of tasks and actions. In the next iteration,
the robot will make a number of hypothesis about what the
goals could be and then become more certain about these as-
sumptions over multiple examples. Additionally, we would
like to improve the collaborative interaction and dialog with
a richer set of conversational policies. This would be useful
for negotiating the meshing of sub-plans during task exe-



cution, making this process more flexible. For instance, the
current turn taking mechanism works by negotiating task di-
vision at each step along the way. Allowing this negotiation
to happen in advance as well would speed up the interac-
tion and make it more natural to the human partner.

10. Conclusion

The goal of our work is to make robots more intuitive, ef-
ficient, and enjoyable for humans to interact with, to work
with, and to teach. To do so, we model these capabilities
as fundamentally collaborative processes that rely on open
communication using natural human social skills, conven-
tions and understanding. We have presented two important
steps toward this goal: the ability to teach a task to a robot
through the course of collaborative dialog with gesture and
facial expression, and the ability to coordinate joint inten-
tions to perform the learned task collaboratively. Our goal-
centric approach at both the task and the action level, based
on joint intention theory, proved valuable by establishing a
common ground for both learning and collaboration, mak-
ing them natural for the human, as well as flexible and effi-
cient for the robot.
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