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Abstract

The grounding of symbols in computational models of linguistic abilities is one of the fundamental
properties of psychologically plausible cognitive models. In this article, we present an embodied model
for the grounding of language in action based on epigenetic robots. Epigenetic robotics is one of the new
cognitive modeling approaches to modeling autonomous mental development. The robot model is based
on an integrative vision of language in which linguistic abilities are strictly dependent on and grounded
in other behaviors and skills. It uses simulated robots that learn through imitation the names of basic ac-
tions. Robots also learn higher order action concepts through the process of grounding transfer. The sim-
ulation demonstrates how new, higher order behavioral abilities can be autonomously built on previ-
ously grounded basic action categories following linguistic interaction with human users.

Keywords: Symbol grounding; Epigenetic robotics; Human–robot interaction; Embodied cognition;
Language evolution; Imitation; Grounding transfer

1. Introduction

Various computational modeling approaches have been proposed to study communication
and language in cognitive systems such as robots and simulated agents. On one end, there are
models of language primarily focused at the internal characteristics of individual agents in
which the lexicon is constructed on a self-referential symbolic system. The cognitive agents
only possess a series of abstract symbols used for both communication and for representing
meanings (e.g., Kirby, 2001). These models are subject to the symbol grounding problem
(Harnad, 1990). That is, symbols are self-referential entities that require the interpretation of
an external experimenter to identify the referential meaning of the lexical items.
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On the other end, there are grounded approaches to modeling language in which linguistic
abilities are developed through the direct interaction between the cognitive agents and the so-
cial and physical world they interact with. The external world and the agent’s own internal rep-
resentation of it play an essential role in shaping the language used by these cognitive systems.
Language is therefore grounded in the cognitive and sensorimotor knowledge of the agents
(Cangelosi, Bugmann, & Borisyuk, 2005; Steels, 2003). For example, environmental stimuli
are perceptually transformed by the agent’s own sensorimotor systems and might constitute
the topic of conversation. This is the case of categorical perception in which the agent’s percep-
tual abilities constrain the representation of the environment that an agent can build. At the
same time, the environment is subject to changes due to the communicating act of the agents
themselves, for example, when the agents’ lexicon creates new categorical representation of
environmental entities.

The grounding of language in autonomous cognitive systems requires two mechanisms.
The first is the direct grounding of the agent’s basic lexicon. This assumes the ability to link
perceptual (and internal) representations to symbols through supervised feedback. For exam-
ple, an agent can learn that the symbol horse is grounded in its direct experience with this ani-
mal. The second mechanism implies the ability to transfer the grounding from the basic sym-
bols to new symbols obtained by logical (e.g., syntactic) combinations of the elementary
lexicon. The same agent can learn, without direct experience, that there is a hypothetical ani-
mal, the unicorn, that is perceptually grounded in the linguistic description of “horse with a
horn.”

Direct grounding has been widely studied in embodied autonomous agents (see Cangelosi,
2005, for a review), whereas grounding transfer has only been demonstrated in connectionist
simulations (Cangelosi, Greco, & Harnad, 2000; Riga, Cangelosi, & Greco, 2004). In this arti-
cle, we report a new study on grounding transfer in cognitive robots for the acquisition of
higher order action categories via linguistic instructions. We use an epigenetic robotic ap-
proach (McClelland, Plunkett, & Weng, in press; Prince & Demiris, 2003; Weng et al., 2001)
in which a simulated robot initially learns, via imitation, a series of basic actions and their cor-
responding names. An artificial neural network controls the robot’s motor and linguistic
behavior. The robot then acquires the names of new high-order action categories following lin-
guistic interaction with human users. The hypothesis is that the combination of direct ground-
ing of basic words and their use to express new categories will result in the actual acquisition of
new sensorimotor capabilities. After training, the agent is tested to establish whether it can ac-
tually produce the new composite actions when their hearing their names. This would demon-
strate that grounding from the basic action names has been transferred to the new composite
categories.

The motivation for developing such a model of language embodiment and grounding is two-
fold. First, there is a need for psychologically plausible computational models of language em-
bodiment to further support the growing theoretical and experimental evidence on sen-
sorimotor grounding (Pecher & Zwaan, 2005). Computational models can help to investigate
the detailed mechanisms involved in the process of grounding. The proposed approach is based
on the combination of neural network and robotic methodologies, which we call “embodied
connectionism” (Cangelosi, 2006). This will provide a modeling platform for the development
of grounded language systems that overcome the known shortcoming of featured-based
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connectionist models of language (Glenberg, 2005; see also Section 4) and of the sym-
bolic-only models (Burgess & Lund, 1997; Kirby, 2001; Landauer & Dumais, 1997).

The second motivation regards the scientific and technological advances in the design of in-
teractive cognitive systems able to communicate with humans and other robots. In artificial in-
telligence and robotics, the issue of instruction-based learning and linguistic interaction has
become one of the priority areas for future research. Some of the most promising results have
come from grounded robotic approaches based on the acquisition of language through direct
sensorimotor interaction with the environment (Cangelosi et al., 2005).

In the following subsections, we look at the state of the art in both experimental and model-
ing studies of the grounding of language. We then present the epigenetic robot modeling setup
(Section 2) and the results of the simulated robotic experiments on symbol grounding and the
autonomous transfer of sensorimotor grounding (Section 3). In the final section, we discuss the
advantages of such an approach to model embodied cognition and its potential application in
further experimental and computational investigations of language grounding.

1.1. Grounding language in action and perception:
Theoretical and experimental studies

In the past few years, there has been a growing body of theoretical and empirical evidence in
support of the role of embodiment and sensorimotor factors in language use (e.g., Barsalou,
1999; Coventry & Garrod, 2004; Feldman & Narayanan, 2004; Gallese & Lakoff, 2005;
Glenberg & Robertson, 2000; Pulvermüller, 1999; Zwaan, 2004; see also Pecher & Zwaan,
2005, for a recent review). Overall, language grounding theories support the view that lan-
guage use involves modality-specific simulations of the referents and the actions described in
the sentences.

Simulation theories vary for the focus they put on some of the mechanisms involved in these
simulations and the detailed function of the simulation process. For example, Barsalou (1999)
focused on modality-specific perceptual and simulation processes within the perceptual sym-
bol system hypothesis. Barsalou suggested that the brain association area partially reactivates
sensorimotor areas to implement perceptual symbols. This includes memories of
sensorimotor, proprioceptive, and introspective events and also dynamic mental representa-
tions of object interaction (e.g., Zwaan, Madden, Yaxley, & Aveyard, 2004). Such memories
are organized around a common frame, which constitutes the structure of a simulator. The co-
ordinate activity of simulators implement a basic conceptual system that represents types, sup-
ports categorization, and produces categorical inferences. Barsalou also showed how abstract
concepts are grounded in complex simulations of combined physical and introspective events.

Glenberg and collaborators (e.g., Borghi, Glenberg, & Kaschak, 2004; Glenberg &
Kaschak, 2002; Kaschak et al., 2005) have focused on the action and embodiment component
of language. Glenberg and Kaschak (2002) have demonstrated the existence of action-sen-
tence compatibility effects (ACE). In sentence comprehension tasks, participants were faster
to judge the sensibility of sentences implying motion toward the body (e.g., “Courtney gave
you the notebook”) when the response requires moving toward the body. When the sentence
implied movement away from the body, participants were faster to respond by literally moving
away from their bodies. The data support an embodied theory of meaning that relates the
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meaning of sentences to human action and motor affordances. This view, called the “indexical
hypothesis” (Glenberg, 1997; Glenberg & Robertson, 2000), suggests that in the reading of a
sentence, the first process is to index words and phrases to objects in the environment or to ana-
logical perceptual symbols. The second process is deriving affordances from the object or per-
ceptual symbol. Finally, the third process is to mesh the affordances into a coherent set of ac-
tions. The mesh process is guided by syntax of the sentence being processed.

Gallese and Lakoff (2005) used neurophysiology evidence to show that language makes di-
rect use of the same brain structures used in perception and action. Gallese and Lakoff sug-
gested that brain structures in the sensorimotor regions are exploited to characterize abstract
symbolic concepts that constitute the meanings of grammatical constructions and general in-
ference patterns. The semantics of grammar is constituted by cogs, that is, structuring circuits
used in the sensorimotor system.

Such theories of the sensorimotor grounding of language propose an alternative account to
classical symbolic theories of meaning and cognition (e.g., Fodor, 1975). According to this ac-
count, the meaning of words comes from the contexts in which these words are used (Burgess
& Lund, 1997; Landauer & Dumais, 1997), and there is no need for direct correspondence be-
tween the symbolic system and perceptual states. Proponents of symbolic theories acknowl-
edge the role of perceptual and sensorimotor factors in the acquisition of language but after this
early stage of language development, they assume the autonomy of language and symbolic
processes in cognitive tasks. Embodiment theories of language, instead, stress the online ef-
fects of sensorimotor processes in language use.

1.2. Grounding language in action and perception:
Computational models

Grounded approaches to modeling language are based on the principles of autonomous and
embodied communication. Cognitive agents can autonomously acquire communication capa-
bilities through interaction with each other and with humans. An important characteristic of
this approach is the fact that the properties of the robot’s own body and their physical environ-
ment influence and contribute to the acquisition of a lexicon directly grounded in the world
they live in (Steels, 2003; Cangelosi et al., 2005).

Some of these models focus on the emergence of shared lexicons through biological and/or
cultural evolution mechanisms (Cangelosi & Parisi, 2002). In these models, a population of
cognitive agents is initialized that use random languages. Agents are able to interact with the
physical entities in the environment and to construct a sensorimotor representation of it.
Through an iterative process of communication and language games, agents converge toward a
shared lexicon. For example, Steels and collaborators (Steels, 2003; Steels, Kaplan, McIntyre,
& Van Looveren, 2002) have used hybrid population of robots, Internet agents, and humans en-
gaged in language games. Agents are in turn embodied into two “talking-head” robots to play
language games. A shared lexicon gradually emerges to describe a world made of colored
shapes. This model has also been extended to study the emergence of communication between
humans and robots using the SONY AIBO interactive toy robot (Steels & Kaplan, 2000).
Steels’s (2003) approach is characterized for the focus on the naming of perceptual categories
and for the stress of social mechanisms in the grounding and emergence of language. Marocco,
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Cangelosi, and Nolfi (2003) used evolutionary robotics for the self-organization of simple lexi-
cons in a group of simulated robots. Agents are first evolved for their ability to manipulate ob-
jects (e.g. touché spheres, avoid cubes). Subsequently, they are allowed to communicate with
each other. Populations of agents are able to evolve a shared lexicon to name the objects and the
actions being performed on them.

In other models of language grounding, robotic agents acquire a lexicon through interaction
with human users. For example, Roy, Hsiao, and Mavridis (2003) developed an architecture
that provides perceptual, procedural, and affordance representations for grounding the mean-
ing of words in conversational robots. Sugita and Tani (2004) used a mobile robot that follows
human instructions based on the combinations of five basic commands. Yu (2005) focused on
the combination of word learning and category acquisition to show improvements in both
word-to-world mapping and perceptual categorization. This suggests a unified view of lexical
and category learning in an integrative framework.

The previously mentioned models clearly support the view that language is intrinsically
linked to the constraints imposed by the human perceptual, cognitive, and embodiment system.
However, they have seldom been used to address specific issues and findings in language em-
bodiment research. For example, Coventry et al. (2005) and Joyce, Richards, Cangelosi, and
Coventry (2003) have developed a neural network model of spatial language that directly sim-
ulates the perceptual symbol system hypothesis of Barsalou (1999). Joyce et al. (2003) and
Coventry et al. have used simple recurrent network (Elman, 1990) within a hybrid
connectionist/vision architecture to simulate and integrate perceptual factors in the production
of spatial quantifiers. Dominey (2005) carried out some human–robot communication experi-
ments on the emergence of grammar. Dominey’s study provides insight into a developmental
and evolutionary passage from unitary idiom-like holophrases to progressively more abstract
grammatical constructions. Finally, in a computational model based on population of agents,
Cangelosi and Parisi (2004) used synthetic brain imaging methods to analyze the activity of the
agents’ neural networks. Results show that different linguistic categories, such as nouns and
verbs, share the neural substrate of different sensorimotor processes. Results show that nouns
(names of objects) produce more neural activity in the hidden layer dedicated to sensory pro-
cessing of visual stimuli, whereas verbs (names of actions) produce enhanced synaptic activity
in the layer where sensory information is integrated with proprioceptive input. Such findings
are qualitatively compared with human brain imaging data that indicate that nouns activate
more the posterior areas of the brain related to sensory and associative processing, whereas
verbs activate more the anterior motor areas (Cappa & Perani, 2003).

2. An epigenetic robotic model for grounding transfer

The model is based on an online imitation learning algorithm for the acquisition of behav-
ioral and linguistic knowledge in a group of robots. The combination of imitation and language
learning is mainly motivated by the fact that imitation has been consistently considered as one
of the fundamental mechanisms for the acquisition of language (Tomasello, 2002). This model
is based on a simple online supervised neural network algorithm. It uses error back propaga-
tion to continuously correct the motor response of an imitator robot so that it closely matches
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the behavior of a demonstrator robot. The back-propagation algorithm is also used to teach the
robot the names of actions.

2.1. Robot body

The model consists of a computer simulation of two robotic agents embedded in a virtual
environment. The simulation program accurately models the physical constraints and ob-
ject–object interactions using the physics engine open dynamics engine1 (ODE). ODE is an
open source library for simulating rigid body dynamics, advanced joint types, and integrated
collision detection with friction. It can be used for simulating vehicles, objects in virtual reality
environments, and virtual creatures. Although the ODE robotic model cannot fully take into
account all the complex embodiment properties of real robots, it permits a good inclusion and
consideration of physical systems.

The robot’s body consists of two 3-segment arms (rotating shoulder, upper arm, forearm) at-
tached to a torso and a base with four wheels (Fig. 1). The details of the robots body are as fol-
lows (in ODE length points):

• Wheels (4): width 0.2, ray 0.25.
• Base: width 0.75, length 0.75, height 0.25.
• Torso: width 0.25, length 0.25, height 0.75.
• Neck: width 0.25, length 0.25, height 0.25.
• Head: width 0.35, length 0.5, height 0.25.
• Shoulder (2): width 0.25, length 0.25, height 0.25.
• Upper arm (2): width 0.25, length 0.25, height 0.75.
• Forearm (2): width 0.25, length 0.25, height 0.75.

The robot has 12° of freedom. The constraints of the degrees of freedom of the joints are as
follows:

• Wheels-base (4): no limit.
• Torso-shoulder (2): 180° (vertical plane).
• Shoulder-upper arm (2): 90° (horizontal plane).
• Upper arm-forearm (2): 90°.
• Torso-neck: 90° (vertical plane).
• Neck-head: 180° (horizontal plane).

The first agent, called demonstrator, has the role of showing the correct performance of
some basic motor actions. This robot is manually programmed to perform actions on objects,
that is, with prespecified forces to apply to the motor joints at every time step. The second
agent, an imitator, learns the actions by imitating the demonstrator’s behavior. This agent is
equipped with an artificial neural network controller. The imitator learns to perform basic ac-
tions by predicting the demonstrator’s movement trajectories using an “imitation algorithm”
that supplies teacher input to a neural network. The resulting motion dynamics are elaborated
by the neural network that is able first to repeat the actions during imitation and successively is
able to execute them autonomously in absence of the imitator input and feedback. The robot’s
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neural controller also learns the words associated to the actions so that when the imitator
“hears” a word, it can perform the corresponding action.

2.2. Neural network controller

The neural network controller of the imitator consists of a fully connected feed-forward net-
work with bipolar sigmoid units. There are 26 input units that encode the names of all possible
actions. The hidden layer contains 8 units. These are modularly connected to the 8 output mo-
tor units (see Fig. 1). The output value of each motor neuron corresponds to the force applied to
the corresponding motorized joint. The modularity of the hidden layer is realized by separately
connecting four groups of two hidden nodes to four pairs of output nodes. These pairs encode
the following motorized joint groups: left upper arm and forearm; right upper arm and forearm;
shoulder and upper arm; and wheels (same for all four). The modular organization of the hid-
den-output connections has been designed to allow the robotic agents to learn combinations of
the action words. Such a modular, connectionist architecture has been demonstrated to be nec-
essary for action/language tasks requiring the acquisition of higher order categories via combi-
nations of their names (Greco, Riga, & Cangelosi, 2003).

The diagram in Fig. 1 gives an overview of the imitator agent’s functional modules, its neu-
ral controller, and a view of the three-dimensional robots and environment. When the demon-
strator agent performs an action and utters the corresponding word, the imitator agent activates
the following procedure. The symbolic parser filters the linguistic input and converts it to a for-
mat suitable for the network (localist encoding of one word per linguistic input unit). In paral-
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lel, the imitation algorithm computes an estimation of the motor output necessary to perform
the same action. The neural network then computes the actual motor output at the current time
step. This output is sent to the actuators to produce the action. Successively, an online error
back propagation is applied to the imitator’s neural controller using the motor output estimated
by the imitation algorithm as teaching input. All weights and biases are subject to change. The
back propagation algorithm is applied at each time step.

The imitation algorithm, based on a hyperbolic tangent function, is defined by the following
functions:

The first function computes an estimation of the necessary force f(t + 1) to apply to each mo-
torized joint in the next time step so that it approximates the posture currently exhibited by the
demonstrator. It takes as input the joint angles x(t) of the demonstrator agent and the joint an-
gles y(t) and motor forces f(t) of the imitator agent for all joints in the current time step. Experi-
mental evidence has demonstrated that joint angles are used for postural control in imitation
(Desmurget & Prablanc, 1997). The scale α and gain β are constant values set to 0.5 in this sim-
ulation. The scale parameter α is similar to the learning rate in the error back-propagation algo-
rithm in which higher values produce bigger weight changes and faster learning. The gain pa-
rameter β changes the hyperbolic function (lower values correspond to flatter sigmoids).

For simplicity of implementation, the input regarding the posture of the teacher is assumed
to have been preprocessed to identify and compute the demonstrator’s posture angles. Thus,
the imitator agent directly receives the joint angle values instead of having to analyze the scene
of a moving arm and generate the values of the joint angles. The implementation based on di-
rect imitation is justified by the need to have a process of grounding based on the pre-
acquisition of action categories from a teacher or parent agent. The choice of direct overt imita-
tion for action and language learning is also motivated by the central role of imitation in the
evolution and acquisition of language and cognition (e.g., Charman et al., 2000; Tomasello,
2002). The overt imitation setup has also been chosen for the potential it has of allowing the
imitator agent to learn to imitate actions directly performed by a human participant, for exam-
ple, through motion capture software. However, at this stage, we did not want to deal with the
complexity of robotics and motion capture systems (Dautenhahn & Nehaniv, 2002; Schaal,
1999) because of the focus on language learning and grounding transfer.

2.3. Robot training

The simulation consists of three training stages and a testing phase. Training is incremental
and follows these three stages: (a) basic grounding (BG), (b) higher order grounding 1 (HG1),
and (c) higher order grounding 2 (HG2). The testing stage, at the end of the training, consists of
the autonomous execution of all basic and higher order actions following the input of the corre-
sponding action names.
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2.3.1. Basic grounding (BG)
During the BG training stage, the imitator learns to execute eight basic actions by observing

the demonstrator and mimicking its movement. Words corresponding to the action names are
presented in input to the learner’s neural controller. The imitator simultaneously learns the
actions and their names, thus directly grounding the word in the perception of the imitator’s ac-
tion and the production of its own motor response. This constitutes the basic grounding of
action words. The following eight basic actions/words are taught during each BG training
epoch: CLOSE_LEFT_ARM; CLOSE_RIGHT_ARM; OPEN_LEFT_ARM; OPEN_RIGHT_ARM;

LIFT_LEFT_ARM; LIFT_RIGHT_ARM; MOVE_FORWARD; MOVE_BACKWARD. To perform each of
these basic actions, the robot always starts from a default position with an angle of 45° for both
the joints upper arm and lower arm and shoulder and upper arm. Each action lasts for 100 time
steps. The error back propagation is applied online at every time step. The BG learning lasts for
50 training epochs.

2.3.2. Grounding transfer during higher order learning HG1 and HG2
During the next two higher order grounding stages (HG1 and HG2), the imitator robots

learn the names of combined actions by receiving linguistic descriptions through a natural lan-
guage interface or directly from the teacher agent. The higher order learning has the role of ac-
quiring the names (and concepts) of new actions. This is possible through the process of sym-
bol grounding transfer by which the sensorimotor grounding of basic action names is
indirectly transferred to that of new words.

A human operator can communicate with the agent using a keyboard to write simple in-
structions using an ad hoc pidgin English language. Two types of utterances are possible:
higher order descriptions and commands. Higher order descriptions consist of three words re-
spectively naming a new higher order action word and two basic/lower order actions. These in-
structions serve to learn the new word and its associated action pattern. Commands consist of
the name for an action. They cause the agent to execute the appropriate action by activating the
corresponding input node in the network and producing the motor action. Higher order de-
scriptions are used during learning, whereas commands are used for testing. For speed of exe-
cution, the higher order linguistic descriptions and commands are recorded before the simula-
tion so that the teacher agent can send them in input to the learner during the higher order
training stages.

A higher order action based on the combination of two basic actions is called first-level
higher order behavior (HG1). For example, one of such behaviors is object grabbing and has
the following description2: “GRAB [is] CLOSE_LEFT_ARM [and] CLOSE_RIGHT_ARM” (see top
row of Fig. 2). Grounding transfer takes place from the directly grounded “CLOSE_LEFT_ARM”
and “CLOSE_RIGHT_ARM” words to the new “GRAB” word. This enables the agent to correctly
execute the command “GRAB” by combining the actions of pushing both arms toward the ob-
ject and grabbing it.

A higher order behavior consisting of the combination of one basic action and 1 first-order
action is called second-order action (HG2). For example, the description “CARRY [is] GRAB

[and] MOVE_FORWARD” is a second-order action (see bottom row of Fig. 2).
After the last BG epoch, the imitator robot receives HG1 linguistic descriptions (i.e., a new

word and two known words referring to basic actions). Each HG1 training epoch contains 13
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learning trials, that is, 5 first-order actions (GRAB, PUSH_LEFT, PUSH_RIGHT, OPEN_ARMS,

ARMS_UP) and eight BG actions. HG1 training stage lasts for 100 epochs.
The imitator agent starts HG2 training at the 151st epoch. Three 2nd-level higher order ac-

tions (CARRY, PULL, CHEER) are taught during HG2 stage for 150 additional epochs. This im-
plementation with 50 epochs for the BG stage, 100 epochs for HG1, and 150 epochs for HG2
training reflects the increasing difficulty of the incremental learning task the imitator agent
needs to master.

To achieve grounding transfer, the imitator agent learns to use some of the neural represen-
tations acquired during BG to those of stages HG1 and HG2. This process grounds new words
in the neural controller by adaptively linking the hidden units’ activations of the words con-
tained in the description as previously demonstrated in Cangelosi et al. (2000). In this model,
this is achieved first by separately providing each defining (i.e., basic and/or lower order) word
in input to the network and temporarily recording the motor response (without applying error
back propagation). Successively, the network receives as input only the newly defined (i.e.,
higher order) word so that the resulting output is corrected through back propagation by using
as teaching input the output previously recorded.

The back propagation, weight-correction procedure consists of two training cycles, respec-
tively, for each of the two basic words used in the description (Fig. 3). For example, to learn the
novel behavior of grabbing from the description “GRAB [is] CLOSE_LEFT_ARM [and]
CLOSE_RIGHT_ARM,” the agent’s controller first produces the output corresponding to the input
of the first word “CLOSE_LEFT_ARM.” This force is not applied to the joint motors, but is tem-
porarily stored to be used as teaching input in the next activation cycle. The joints values are
generated and recorded for all the 100 time steps of action execution. Subsequently, the input
node corresponding to the “GRAB” action is activated, and the network produces a motor re-
sponse in the output nodes. The previous teaching input is now used to compute the error and
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row) and higher order grounding 2 (HG2; bottom row). Top row (from left to right): “GRAB IS CLOSE_LEFT_ARM and
CLOSE_RIGHT_ARM” (basic grounding [BG] + BG = HG1). Bottom row: “CARRY IS MOVE_FORWARD AND GRAB” (BG
+ HG1 = HG2).



apply the back-propagation algorithm for 100 time steps. During the second phase, the same
procedure is repeated for the generation of the teaching input signal from the activation of the
input node “CLOSE_RIGHT_ARM” and the subsequent weight correction from the input of the
word “GRAB.” These two steps are repeated for each combined action description in training
stages HG1 and HG2.

This grounding transfer mechanism enables an agent to learn new actions not only through
direct experience and trial-and-error learning, as during BG, but also indirectly through the ex-
change of linguistic utterances with other agents. New actions are learned without the need of
direct observation and imitation of the demonstrator agent.

3. Simulation results

Each simulation experiment consisted of 300 training epochs (50 BG, 100 HG1, 150 HG2).
Each action lasts for 100 time steps, so each simulation lasts for 30,000 cycles. We performed
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get input for back propagation learning. Input patterns are binary representations of words, whereas output patterns
are forces applied to each motorized joint.



10 replications of such an experiment using neural networks with different initial random
weights. Weights were initialized in the range ± 1.0 at the first epoch. The learning rate was
0.05 during BG learning and 0.01 during the grounding transfer process of HG1 and HG2.

We registered the final posture errors and the average posture errors for the BG, HG1, HG2,
and testing stages of every epoch. The final posture error measures the difference in posture be-
tween the two agents only at the last (100th) time step of each action. This error does not con-
sider the movement trajectories but only the final posture. The average posture error records
the difference in posture (i.e., eight joint angles) between the imitator and the demonstrator av-
eraged over all 100 time steps, thus taking into account the movement trajectories. All error
values are computed as root mean square (RMS) values using as correct value the joint angles
of the demonstrator. Note that although the imitator’s joints are compared with those of the
demonstrator for visualizing the RMS errors during training, during the HG stages, these errors
are never used by the imitator during back propagation learning.

The imitation learning of the eight basic actions was successful. All actions were correctly
acquired, with a final average posture error of 0.08 after the last epoch (average error over the
10 replications). All 5 first-order actions/names were also successfully learned with a final
posture error of 0.05 after the last epoch. The 3 second-order actions/names were successfully
acquired with a final posture RMS error of 0.09 after the last epoch. Thus, agents correctly exe-
cuted all basic, first-, and second-order actions in response to the input of their names. For ex-
ample, after hearing the second-order action name “PULL,” agents pushed both arms against
the object and moved backward, effectively exhibiting the behavior of dragging the object
backward as defined in this experiment.

Overall, the average posture error remained higher than the final posture error. This means
that the imitator agent gradually approximates the movement trajectory toward the target pos-
ture but finishes in the desired position with great accuracy. This effect is present in the basic
behaviors but becomes more evident when executing first-level composite actions and is very
clear in the second-level behaviors (Fig. 4). The level of grounding transfer of a word has a

684 A. Cangelosi, T. Riga/Cognitive Science 30 (2006)

Fig. 4 Left graph: Average posture errors after training for the basic, first, and second level of word groups. Right
graph: Final posture errors after training for each level. Data were averaged over the 10 replications. BG = basic
grounding; HG1 = higher order grounding 1; HG2 = higher order grounding 2.



clear effect on the behavior it generates, as the ideal trajectory to a target position is not fol-
lowed accurately, although always leading to the correct final posture.

This pattern of results, that is, the learning of all basic and HG actions up to a final posture
RMS error of between 0.05 and 0.09, was found in all replications, and there were no major
qualitative or quantitative differences between the 10 simulations.

4. Discussion and conclusions

The simulation we presented here provides a clear demonstration of the grounding transfer
mechanism for simulated linguistic robots. New actions are acquired through the process of
symbol grounding transfer from basic, directly grounded action categories to higher order, in-
directly grounded behaviors. The grounding transfer is a very important aspect of research on
autonomous cognitive systems. For a system to be fully autonomous, it is important that it is
able to use its own linguistic and cognitive abilities to further expand its knowledge of the envi-
ronment. The design of a linguistic agent able to acquire and ground language only through di-
rect perception and experience of the external world is not enough (Harnad, 1990). One of the
most important aspects of human language is productivity by which new concepts can be ex-
pressed through combinations of the words. Although the robotic agents we studied in this
simulation do not have full linguistic and compositional abilities (e.g., the use of a syntactic
lexicon), they can rely on simple compositional mechanisms to enrich their lexicon. The
grounding transfer makes sure that new concepts are grounded into the agents’ own sen-
sorimotor repertoire. In addition, the agents do not necessarily need to rely on the external in-
put of the demonstrator robot (or a human experimenter) to acquire new concepts because they
autonomously combined the basic words to construct new composite action categories.

The procedure used for the autonomous acquisition (production) of high-order action cate-
gories (see Fig. 3) can be considered an implementation of Barsalou’s (1999, Section 3.1) sym-
bol productivity mechanism in the perceptual symbol system framework. The agent plays
some kind of internal mental simulation when they produce and record the output values corre-
sponding to the input activation of the two basic action names (e.g., CLOSE_LEFT_ARM and
CLOSE_RIGHT_ARM). These mental records are then used by the agent to merge the results of
the two motor simulations and autoteach the output values corresponding to the name of the
new action (GRAB). In addition, the type of higher order composite actions we describe here
also related to research on conceptual combination such as in the categories based on
noun–noun combinations (Wisniewski, 1997).

The design and test of this first robotic model of symbol grounding transfer required some
simplifications, both in the repertoire of behavior/lexicon and the imitation algorithm. How-
ever, ongoing research is focusing on the scaling up of this model. For example, Hourkadis and
Cangelosi (2005; see also Cangelosi, Hourdakis, & Tikhanoff, 2006) have expanded the neural
network controller of the robot to include both language production and comprehension capa-
bilities. The neural network receives in input both visual information and language so that the
agent can produce linguistic descriptions (vision input to language output) as well as be able to
understand language (from language input to motor output). In Massera, Nolfi, and Cangelosi
(2005), new simulations have focuses on the autonomous acquisition of arm control capabili-
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ties without the need for direct imitation. This advanced model of the robotic arm model uses
evolutionary algorithms. Other simulations are explicitly addressing the scaling up of the lexi-
con to hundreds of words and the use of more structured lexicons. This is based on the gradual
introducing of syntactic structures. For example, the first step will consist in the ability to use
arguments for the learned actions. For example, through the introduction of three types of ob-
jects (e.g., round spheres for balls, flat objects for books, long cylinders for sticks), it is possi-
ble to train robots to apply the same action to different objects such as “Grab(Ball),”
“Grab(Book).” At the same time, the use of objects with different shapes will permit the con-
struction of a variety of linguistic categories whose representation might vary depending on the
interaction between the robot’s own embodiment properties and the object motor affordances.

The potential extensions we discussed previously will permit the use of this model as an em-
bodied simulation platform for new computational investigations that replicate the well-known
grounding effects. For example, a model able to learn actions in response to objects requiring
different motor affordances could be used to replicate the ACE found by Glenberg and collabo-
rators (e.g., Glenberg & Kaschak, 2002). One could train a robot to perform various sets of ac-
tion all following specific spatial directions (e.g., pull–push, open–close) and to learn linguis-
tic descriptions of scenes involving the manipulation of objects with front/backward
movements. The analyses of the activity of the neural networks during the successful replica-
tion of ACE effects could permit a detailed investigation of the interaction and sharing between
sensorimotor and linguistic representations. Embodied simulation agents have been already
used to study embodiment effects, although not linked to language. Tsiotas, Borghi, and Parisi
(2005) built an evolutionary agent model of the action compatibility effects. Tucker and Ellis
(2001) demonstrated the action compatibility effect between the type of grasp (precision vs.
power grip in the response to microaffordances for a pen vs. apple) and a task-irrelevant dimen-
sion (e.g., color). Tsiotas et al. first trained agents (consisting of an arm with two fingers) to
grasp objects according to their size—for example, precision grip for small objects and power
grip for large objects (compatible condition). These corresponded to the default object
affordances. Then Tsiotas et al. also trained agents to grasp objects according to their color, ig-
noring their size (incompatible condition). Agents produced the same compatibility effects in
terms of shorter training cycles for the compatibility condition versus the incompatible. In ad-
dition, analyses of the agents’ neural networks showed that in the hidden units, the visual input
of an object automatically activates information on how to grasp them and also when this infor-
mation is not relevant to the task. This study demonstrates the potential of computational,
agent-based models for studying embodiment effects.

This study also has important potential implications for robotics research, in particular, in
cognitive robotics. In this area, epigenetic robotics is one of the most promising approaches for
the design of autonomous robots (McClelland et al., in press; Smith & Gasser, 2005; Weng et
al., 2001). This approach takes inspiration from research in developmental psychology and
neuroscience and focuses on the emergence of complex cognitive and perceptual structures as
a result of the interaction of an embodied system with a physical and social environment. This
simulation mostly focuses on the grounding of linguistic abilities and the acquisition of early
words. As a consequence, the other cognitive capabilities of the robotic agent are based on sim-
plified assumptions. For example, the model is based on the technical assumption that the imi-
tator can “read” the demonstrator’s joint angles and use them as teaching input. A variety of
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models of imitation have been proposed, some of which are based on more psychologically
plausible mechanisms. Demiris and Johnson (2003) recently focused on the fact that the robot
must infer and predict the actions being demonstrated. The future integration of various imita-
tion, cognitive, and linguistic abilities in one integrated cognitive system can better help the
epigenetic design of autonomous robotic systems.

Finally, this research also has a general practical and technological bearing. In robotics and
artificial intelligence, language grounding models can provide novel algorithms and method-
ologies for the development of effective interaction between humans and autonomous com-
puter and robotic systems. If robots are to be introduced into everyday life, they will need to be
programmable by users that do not necessarily have formal computer programming skills. Hu-
mans acquire language through a rich combination of learning strategies including imitation,
attentional cues, feedback cues, gestures, and verbal instructions. These modalities could be
combined in a linguistic robotic model to achieve a natural, intuitive way of programming
robots.

Notes

1. See http://opende.sourceforge.net.
2. The words between brackets are filtered out by the parsing and ignored during the

training.
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