
Lecture 2

Independence Modelling

• Independence is a way of
reducing/simplifying complexity/effort/cost
in inference/learning/elicitation/optimization.
NB. effective size of a search space for domain X is 2I(X)

and independence reduces entropy I(X)

• Independence arises naturally with causal and
generative models.

• We use Lauritzen-style definitions for
independence tests.
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Overview

• Independence and Problem Decomposition

• Undirected Graphs

• A Tree of Cliques

• Directed Graphs

• A Catalogue of Graphical Forms
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Definitions of Independence

• definition symmetric in X1 and X2
• Z is the conditioning or separating set
• Z appears on both sides of the decomposition
• for consistency X1∩X2 ⊆ Z, e.g. {a}⊥⊥{a,b}|{c,d}

is inconsistent because a is on both sides

Following definitions equivalent for X1⊥⊥X2 |Z:

p(X1,X2 |Z) = p(X1 |Z)p(X2 |Z) whenever p(Z) > 0
p(X1 |X2,Z) = p(X1 |Z) whenever p(X2,Z) > 0
p(X2 |X1,Z) = p(X2 |Z) whenever p(X1,Z) > 0
p(X1,X2,Z) = f (X1,Z)g(X2,Z) for some functions f (·),g(·)
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Decomposition: Maximization

Suppose we wish to maximize a function on finite
discrete variable sets X1,X2,Z, all mutually disjoint,
of the form l f (X1,Z)+ lg(X2,Z). Simplifies to:

max
Z

(

max
X1

l f (X1,Z)+max
X2

lg(X2,Z)

)

This algorithm returns (X̂1, X̂2, Ẑ) at a maximum:

1. Build a table on Z given by l fX1(Z) = maxX1l f (X1,Z).
2. Build a table on Z given by lgX2(Z) = maxX2lg(X2,Z).
3. From these two tables, compute

Ẑ = argmaxZl fX1(Z)+ lgX2(Z)

4. Compute X̂1 = argmaxX1l f (X1, Ẑ).

5. Compute X̂2 = argmaxX1lg(X2, Ẑ).
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Decomposition Summary

• Reduces computation to local effort on X1,Z and
X2,Z separately.

• Need to transfer summaries statistics of Z in both
directions to make local tasks consistent with the
global task.

• When computation is super-linear in number of
variables, savings are made for large enough sets;
significant savings made when |Z| � |X1∪X2|

• Applies to most constraint satisfaction,
optimization and probability problems.
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Decomposition: Summation

Suppose we wish to sum a function on finite
discrete variable sets X1,X2,Z which takes the form
p(X1,X2,Z) = f (X1,Z)g(X2,Z). We wish to compute all
marginals for x ∈ X1∪X2∪Z:

p(x) = ∑
X1∪X2∪Z−{x}

f (X1,Z)g(X2,Z)

The following algorithm finds these:

1. Build a table on Z given by fX1(Z) = ∑X1
f (X1,Z).

2. Build a table on Z given by gX2(Z) = ∑X2
g(X2,Z).

3. Compute p(X1) = ∑Z f (X1,Z)gX2(Z).
4. Compute p(X2) = ∑Z g(X2,Z) fX1(Z).
5. Compute p(Z) = gX2(Z) fX1(Z).
6. Compute the marginals from these.

c©Wray Buntine and Petri Myllymäki - 5 - November 7, 2003



3-way Decompositions

• Slightly different formulation, now Z1 = X1 ∩ X2
and Z2 = X2∩X3

• For all possible pair-wise decompositions to be
consistent independent statements,

X1⊥⊥X2 |Z1; X2⊥⊥X3 |Z2; X1∪X2⊥⊥X3 |Z2; X1⊥⊥X2∪X3 |Z1

it is necessary and sufficient that X1∩X3 ⊆ X2.
Partial Proof: for X1⊥⊥X2 ∪X3 |Z1 case to be consistent,

X1 ∩ (X2 ∪X3) ⊆ Z1 = X1 ∩X2, which reduces to X1 ∩X3 ⊆ X1 ∩
X2, likewise X1∩X3 ⊆ X2∩X3; intersecting these two yields
X1∩X3 ⊆ X2∩ (X1∩X3), hence X1∩X3 ⊆ X2.
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Overview

• Independence and Problem Decomposition

• Undirected Graphs

• A Tree of Cliques

• Directed Graphs

• A Catalogue of Graphical Forms
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Undirected Graph, example

Local Markov Property: (first set X1 is a
singleton) 1⊥⊥4,5|2,3; 2⊥⊥5|1,3,4; 5⊥⊥1,2,3|4;
etc.

Global Markov Property: (indepence on general
sets) 1,2⊥⊥5|4; 1,2,3⊥⊥5|4; etc.

Functional form:

f (1,2,3)g(2,3,4)h(4,5)
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Undirected Graph

For an undirected graph on variables X, the
following are equivalent when p(X) > 0 for all values
of X:

Local Markov Property: for all x ∈ X,

{x}⊥⊥(X −nbrs(x)−{x}) |nbrs(x)

Global Markov Property: for all X1,X2,Z ⊆ X,
X1⊥⊥X2 |Z iff X1 is separated from X2 in the graph
by Z.

Functional Form: for C the set of cliques in the
graph, XC the restriction of X to the set C,
functions fC(·) exist so that

p(X) = ∏
C∈C

fC(XC) .
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Undirected Graph, cont.

• Equivalence between functional form and the
local Markov property for finite discrete variables
is called the Hammersley-Clifford Theorem.
It generalizes the corresponding definitions of
independence.

• Exercise: find a simple half page proof of this.
• Alternative functional form with parameters αC:

log p(X) = ∑
C∈C

αCl fC(XC)− logZ .

Note physicists, statisticians and others often like their

log-probability functions to be nice simple additive forms

like this!
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Undirected Graph,
Independence

• The Global Markov Property defines how to test
for independence:

X1⊥⊥X2 |Z iff X1 is separated from X2 in the
graph by Z

• The same independence test applies for doing
problem decomposition in contraint graphs (i.e.,
constraint satisfaction and optimization).

• Finding a good separating set Z is like a Mincut
problem, but in the dual space (swapping roles
of nodes and edges).
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Finding a Good Decomposition

• Graph partitioning or Hypergraph partitioning,
see Alpert and Kahng 1995.

• Mincut in the dual space mostly finds trivial cuts
where one side is almost empty.

• “Balanced” Mincut, forcing X1, X2 to be similar
sizes is NP-complete.

• Local search works poorly (compared with
others).

• Spectral methods (approximate task with
maximum eigenvector computation) works quite
well.
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Overview

• Independence and Problem Decomposition
• Undirected Graphs
• A Tree of Cliques
• Directed Graphs
• A Catalogue of Graphical Forms
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A Tree of Cliques

• Lets put variable sets in the nodes instead of single
variables, but restrict it to be a tree (no cycles).

• The variable sets cannot be unrestricted: independence
statements likes {a}⊥⊥{a,b}|{c,d} should not be allowed
(i.e., a is independent of itself.

• For any connected subtree, each split must form a
consistent independence statement for its two sides. The
necessary and sufficient conditions are:

if node Xj is on the path between nodes Xi and Xk
then Xi∩Xk ⊆ Xj

• Under these conditions, this is called a clique tree, where
the Xj are called cliques.
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Multiple Decompositions

• Alternatively, generalize independence to a tree
with nodes (sets Xj) as ovals and separating sets
as boxes.

• For any connected subtree, each separating set
must form a consistent independence statement
for its two sides. The necessary and sufficient
conditions are:
– if separating set Z j,l separates nodes Xj and Xl, then

Z j,l = Xj ∩Xl,
– if node Xj is on the path between nodes Xi and Xk then

Xi∩Xk ⊆ Xj
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Multiple Decompositions,
example

Example from “A Tourist Guide through Treewidth”,

H.L. Bodlaender. Shows a good clique tree for the

corresponding undirected graph, i.e., every clique in the

undirected graph is a subset of a clique in the clique tree.
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Multiple Decompositions, cont.

• Computation on a clique tree is like the two-
node case of simple independence: summary
statistics need to go in each direction across
every separating set so that every clique task is
consistent with the global task.

• The tree-width of the clique tree is T = max j |Xj|−
1, one off the size of the largest clique.

• Many NP-complete problems solvable in O(C2T)
for C the number of cliques in a clique tree for the
problem, since the computation on each clique is
O(2T)

c©Wray Buntine and Petri Myllymäki - 17 - November 7, 2003



Overview

• Independence and Problem Decomposition

• Undirected Graphs

• A Tree of Cliques

• Directed Graphs

• A Catalogue of Graphical Forms
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Directed Graph, example

Local Markov Property: 3⊥⊥2|1; 4⊥⊥1|2,3;
5⊥⊥1,2,3|4

Functional form:

p(1)p(2|1)p(3|1)p(4|2,3)p(5|4)
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Directed Graph

NB. English language purists like to point out that

the Directed Acyclic Graph (DAG) is in fact an Acyclic

Directed Graph (ADG).

For a directed graph on variables X, the following
are equivalent:

Local Markov Property: for all x ∈ X,

{x}⊥⊥(X −descendants(x)−parents(x)−{x}) |parents(x)

Functional Form:

p(X) = ∏
x∈X

p(x|parents(x)) .

For the corresponding Global Markov Property, we
need another definition, later . . .
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Directed to Undirected Graph

p(1)p(2|1)p(3|1)p(4|2,3)p(5|4)

(we added an arc between 2 and 3, 4’s parents)

c©Wray Buntine and Petri Myllymäki - 21 - November 7, 2003



Moralizing a Directed Graph

• We look at the functional form of the DAG as if
it were for an undirected graph,

∏
x∈X

p(x|parents(x)) −→ ∏
C∈C

fC(XC) .

i.e. all the sets {x} ∪ parents(x) need to be a
clique in the undirected graph.

• We need to make sure that every two common

parents have an arc between them.
• Converted a directed to an undirected graph

(preserving potential dependencies) is thus called
moralizing, as we “marry” unconnected common
parents.

c©Wray Buntine and Petri Myllymäki - 22 - November 7, 2003



Directed to Many Undirected
Graphs

Depending on the ancestral
sets used, different undirected
graphs can be obtained.
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Directed to Many Undirected
Graphs

Red arcs show the moral arcs added to parents.
The light sections have been removed from the

graph to produce each case.
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Directed Graph, Independence

• The Global Markov Property defines how to test
for independence:

X1⊥⊥X2 |Z iff X1 is separated from X2 in
the undirected graph formed by moralizing
the graph on the smallest ancestral set
containing X1, X2 and Z.

• An equivalent formulation is the d-separation

criterion, used in the AI literature.
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Independence, example

Does Z separate X1 and X2 in any of the moralized
graphs on the ancestral sets?

“asia visit” ⊥⊥ “smoking”, but not if “pos. X-ray” is given.

“asia visit” ⊥⊥ “bronchitis” given “lung cancer”, but not if

“dyspnoea” is also given.

c©Wray Buntine and Petri Myllymäki - 26 - November 7, 2003



Overview

• Independence and Problem Decomposition
• Undirected Graphs
• A Tree of Cliques
• Directed Graphs
• A Catalogue of Graphical Forms
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Image Models
p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4

p3,1 p3,2 p3,3 p3,4

p4,1 p4,2 p4,3 p4,4

Simple 4 × 4 image. Top graph says all pixels
influenced only by their neighbour’s values. Has
checkered history in image analysis, but becoming
more successful.
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Expert Systems: 2 Level Belief
Nets

Model layered with 2 sets of variables: diseases
and syndromes in first level causing symptoms in
the second level. Special algorithms used for this
structure. i.e. QMR-DT
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Estimating the Bias of a
Die/Coin

heads θ

N Beta(1.5,1.5)

heads1

θ
Beta(1.5,1.5)

heads2

headsN

What is the bias of the coin, as given by θ?.
Estimate from N coin tosses. Observed (sampled)
data is shaded. Unknown parameter left unshaded.

General versions model independent and identically

distributed variables in sampling.
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Character Recognition

The observed data
(again shaded)
is the character
strokes. The
unknown data one
wishes to predict
is the underlying
characters. All is
sequential. Called
Hidden Markov

Models.
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More Models

• clustering
• sequential models,
• simple decision models
• principle components analysis
• diagnostic models

See the other online slide sets.
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Next Week

• Review sections I, II and VI of Aji and McEliece.
• Review Bishop’s tutorial Part I to see how you

are going.
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