
Lecture 3

Exact Inference

• Exact inference on graphs is introduced using
variable elimination.

• This produces cliques trees.
• Focus here on summation task. Others similar.

c©Wray Buntine and Petri Myllymäki - 0 - November 14, 2003

Overview

• Linear Elimination

• Clique Trees, Again

• Building Good Clique Trees

• Computation on Clique Trees

c©Wray Buntine and Petri Myllymäki - 1 - November 14, 2003

Variable Elimination, example

This is the “Asia Visit” graph. Consider
summing all variables näively:

∑
x,toc,d,b,t,lc,s,av

f1(x, toc) f2(b,d, toc) f3(toc, lc, t) f4(t,av) f5(b,s) f6(lc,s)

∑
toc,d,b,t,lc,s,av

f ′1(toc) f2(b,d, toc) f3(toc, lc, t) f4(t,av) f5(b,s) f6(lc,s)

∑
d,b,t,lc,s,av

f1,2,3(b,d, lc, t) f4(t,av) f5(b,s) f6(lc,s)

∑
b,t,lc,s,av

f ′1,2,3(b, lc, t) f4(t,av) f5(b,s) f6(lc,s)

∑
t,lc,s,av

f1,2,3,5(lc, t,s) f4(t,av) f6(lc,s)

∑
lc,s,av

f1,2,3,4,5(lc,s,av) f6(lc,s) . . .

where f ′1(toc) = ∑x f1(x, toc),

f1,2,3,5(lc, t,s) = ∑b f ′′1,2,3(b, lc, t) f5(b,s), etc.

c©Wray Buntine and Petri Myllymäki - 2 - November 14, 2003

Variable Elimination:
Observations

• Eliminating toc binds all functions using toc into
one new function, thus creating a new clique on
nbrs(toc).

• Neighbors are thus continually bonded into
cliques at each stage.

• Same happens if we compute a maximum instead
of a sum.

• When computing marginals for all variables (our
original tasks), things are a bit more complicated
because this process is combined with a second
sweep.

c©Wray Buntine and Petri Myllymäki - 3 - November 14, 2003

Single Variable Elimination

For an undirected graph on variables X, and C the
set of cliques in the graph, with distribution

p(X) = ∏
C∈C

fC(XC) .

If x ∈ X is eliminated with a ∑ operation, then the
modifications are as follows (let Cx = nbrs(x)):

fCx(XCx) = ∑
x

∏
C∈C :x∈C

fC(XC)

p(X −{x}) = fCx(XCx) ∏
C∈C :x/∈C

fC(XC)

C
′ = {C ∈ C : x /∈C}∪{Cx}

i.e. nbrs(x) becomes a clique in a revised graph

c©Wray Buntine and Petri Myllymäki - 4 - November 14, 2003

Variable Elimination, example
cont.
If we arrange the variables linearly in the elimination

ordering, we see the intermediate cliques that will be
formed. e.g., arcs between toc and d go to d,b, t, lc,
the arguments to f1,2,3(·).

If the variables E have been eliminated so far,
then the clique set carried forward is nbrs(E) =
∪x∈Enbrs(x)−E. This is the set present if we cut
the linear layout after E.

c©Wray Buntine and Petri Myllymäki - 5 - November 14, 2003

Linear Elimination: Summation
Suppose we have finite discrete variables X, and an
undirected graph on X with clique set C and we
wish to solve the all marginals problem. This more
general recursive algorithm applies if Z = /0 initially:

1. Have a pre-existing separating set Z representing nbrs(E).
For some x ∈ X, build the table fCx(XCx).

2. Consider the sub-problem on X −{x} given by the graph
with cliques C ′, new function fCx(XCx) and separating set
Z′ = Z/{x}∪nbrs(x). Return the joint marginal p(Z ′).

3. From this, compute

p(Z′∪{x}) = p(Z′)p(x|nbrs(x)) = p(Z′)/ fCx(XCx) ∏
C∈C :x∈C

fC(XC)

4. From p(Z′∪{x}), compute p(x) and report it.
5. Likewise compute p(Z) by direct summation and pop this

up to the next level.

c©Wray Buntine and Petri Myllymäki - 6 - November 14, 2003

Linear Elimination: example

This shows the key
values during the
algorithm’s run on the
linear layout. All sets
are read directly off the
linear layout.

Z x nbrs(x)/Z
/0 x {toc}
{toc} toc {b,d, t, lc}
{b,d, t, lc} d /0
{b, t, lc} b {s}
{t, lc,s} t {av}
{lc,av,s} lc /0
{av,s} av /0
{s} s /0

c©Wray Buntine and Petri Myllymäki - 7 - November 14, 2003

Linear Elimination, example
inefficiency

As different parts
of the graph are
marginalized, their
expanding cliques will
not interact.

Here we marginalise
{12}, {0,1}, and
{7,11,15}, leaving 3
separate cliques.

But the linear
model carries all
independent parts
in one big table
p(2,3,4,6,8,10,13,14)
instead of p(2,4),
p(3,6,10,14) and
p(8,13).

c©Wray Buntine and Petri Myllymäki - 8 - November 14, 2003

Linear Elimination, details

• Corresponds to a linear layout of the graph,
whose cut-width or path-width gives the
complexity of the operation.

• Electrical engineers like linear layouts (its a 1-
D version of their 2-D layout problem). Most
of their circuits have cut-width logarithmic in
the size of the graph (see Prasad, Chong
and Kuetzer, 1999), thus solution complexity
polynomial.

• Inefficient: elimination should be organized in a
tree or partial order.

• Note single variable elimination corresponds
exactly to the problem decomposition step with
X1 = {x}, Z = nbrs(x), X2 = X −{x}−nbrs(x).

c©Wray Buntine and Petri Myllymäki - 9 - November 14, 2003

Overview

• Linear Elimination

• Clique Trees, Again

• Building Good Clique Trees

• Computation on Clique Trees

c©Wray Buntine and Petri Myllymäki - 10 - November 14, 2003

Tree-based Elimination,
example

Use a different variable elimination,
but separate non-interacting parts,
so elimination graph is now a tree
or partial order, not a single path.

Elimination ordering below is a
partial order. e.g. only eliminate toc
after all t, x and d are eliminated.

NB. Not all trees are valid elimination orderings.

c©Wray Buntine and Petri Myllymäki - 11 - November 14, 2003

Tree-based Elimination,
example cont.

Again, a layout of the moralized graph, in a tree shape

corresponding to the elimination partial order, shows the

cliques induced during elimination. As for the linear case,

neighbors of the subtree (which are turned into a clique)

correspond to arcs travelling out of the subtree.

c©Wray Buntine and Petri Myllymäki - 12 - November 14, 2003

Tree-based Elimination,
example cont.

As elimination proceeds, the graph is augmented with arcs to

fill in new cliques. Full elimination by the good partial order

induces the undirected graph on the left. The original linear

order induces the one on the right.

c©Wray Buntine and Petri Myllymäki - 13 - November 14, 2003

Revision: Clique Trees

A clique tree (V.E) is an undirected graph with no
cycles whose nodes have sets of variables C ⊆ V ,
not single variables. By convention separating set
between nodes Xj and Xl has variables Xj ∩Xl.

To prevent illegal independence statements, for any
connected subtree in the clique tree, each separating
set must condition a valid independence statement
for its two sides (e.g. {a}⊥⊥{a,b}|{c,d} is not valid).
The necessary and sufficient condition is:

if node Xj is on the path between nodes Xi and Xk then

Xi∩Xk ⊆ Xj

A clique tree corresponding to a directed graph
(V,E) should have every clique in the moralized
version of (V,E) contained in one of the cliques in
the clique tree.

c©Wray Buntine and Petri Myllymäki - 14 - November 14, 2003

Tree-based Elimination,
example cont.

A corresponding clique tree.

The maximum clique size is 5.

c©Wray Buntine and Petri Myllymäki - 15 - November 14, 2003

Tree-based Elimination,
example cont.

A corresponding clique tree.

The maximum clique size is 3.

c©Wray Buntine and Petri Myllymäki - 16 - November 14, 2003

Overview

• Linear Elimination

• Clique Trees, Again

• Building Good Clique Trees

• Computation on Clique Trees

c©Wray Buntine and Petri Myllymäki - 17 - November 14, 2003

Building Clique Trees

• We’ll build clique trees top down, splitting
a clique C at each stage and reassigning its
neigbors to one part of the split.

• Involves using the standard independence
operation and graph partitioning.

• Involves insuring neighbors can be adequately
reassigned: each separating set must be wholly
contained in one side of the split.

c©Wray Buntine and Petri Myllymäki - 18 - November 14, 2003

Building Clique Trees

Here’s a general purpose algorithm.

Repeat until no clique in the tree can be further split (at step
2).

1. Choose a clique C and form Z the set of all existing
separating sets connected to the clique.

2. Find a decomposition/independence in C, X1⊥⊥X2|Z where
Z = X1∩X2, C = X1∪X2 and such that for all Z′ ∈ Z ,Z′ ⊆ X1 or
Z′ ⊆ X2.

3. Split the clique C into X1 and X2 and attach the separating
sets to either according to their membership, assigning
arbitrarily if in both.

NB. related theory in Bodlaender, 1997. NB. One

method for choosing independent sets would be to use good

hypergraph partitioning software with appropriate constraints

on partitions.

c©Wray Buntine and Petri Myllymäki - 19 - November 14, 2003

Tree-based Elimination also
Builds Clique Trees

• Note the algorithm for building clique trees is
symmetric in X1 and X2 in step 2 and any clique
can be selected for further expansion.

• We merge the previous Linear Elimination
algorithm and the Clique Tree Building algorithm
into a Tree-Based Elimination algorithm as
follows: In the clique tree algorithm at step 2,
force X1/∪Z′∈Z Z′ to be a singleton set.
– The algorithm eliminates a single variable in each cycle.
– X2 must be chosen in the next loop at step 1.

• This spawns off cliques containing only a single
variable in addition to separating variables, thus
“eliminating” the variable.

c©Wray Buntine and Petri Myllymäki - 20 - November 14, 2003

Tree-based Elimination, cont

The algorithm works with a main clique C0,
(uneliminated variables) initialized to the set of all
variables X, and updates the undirected graph with
extra arcs.

Repeat until C0 a singleton.

1. Choose a variable x ∈C0, i.e., not yet eliminated.
2. The new separating set Z = nbrs(x)∩C0, the new clique is

Cx = {x}∪Z, remove x from C0, and “fill in” the graph to
make Cx a clique (may affect subsequent use of nbrs(·)).

3. For all cliques connected to C0, split them into those with
separating sets in Cx and those not. Spawn the new clique
Cx off of C0 and allocate the connected cliques to Cx or C0.

NB. Cx formed from neighbors of x, thus any existing

separating set either contains x and is wholly absorbed in Cx,

or does not contain x and thus is contained in the new C0.

c©Wray Buntine and Petri Myllymäki - 21 - November 14, 2003

Tree-based Elimination, cont

Here’s an example on our favorite DAG using
elimination order:

c©Wray Buntine and Petri Myllymäki - 22 - November 14, 2003

Tree-based Elimination, cont

The first few steps:

(1) eliminate av

(2) eliminate t

(3) eliminate x or

NB. new clique can attach to either of two nodes.

c©Wray Buntine and Petri Myllymäki - 23 - November 14, 2003

Tree-based Elimination,
heuristic

• While several suggestions exist for selecting x,
the next variable to eliminate, a common one is:
choose x to minimize the number of arcs filled in
at that step. i.e., the number of arcs added to
make Z or Cx a clique.

• Called minimum fill by Kjaerulff 1990 and
attributed to Rose, 1973.

• Kjaerulff also suggests a method to removed
unnecessary fill-ins after completion.

c©Wray Buntine and Petri Myllymäki - 24 - November 14, 2003

Tree-based Elimination, cont

At each cycle of the algorithm, the new Z is also
the cut set on the hierarchical layout to the right of
the node just eliminated. Therefore:

A tree on variables X is a valid elimination order for an
undirected graph if and only if no variables in different
branches are connected by an arc.

c©Wray Buntine and Petri Myllymäki - 25 - November 14, 2003

Improving Clique Trees

Final clique tree is exactly the same as the partial
order, with the variables to eliminate replace by their
clique. But elimination builds messy trees.

Here we can merge the nodes for b and lc,b into
s, lc,b.

c©Wray Buntine and Petri Myllymäki - 26 - November 14, 2003

Improving Clique Trees, cont

Here’s the clique true built using elimination by the
linear order.

Here we remove the third node for t, lc,b,d as well
as the three on the right.

Reduction Algorithm: for every clique that is a
subset of its neighbors, merge it with one neighbor.
Break ties arbitrarily.

c©Wray Buntine and Petri Myllymäki - 27 - November 14, 2003

Clique Trees and Elimination
Orderings

A clique tree that cannot be reduced is called
irreducible. Every irreducible clique tree can be
generated by a tree-based elimination ordering
following by a reduction step.

Proof Sketch:

Orient the clique tree with a root. Every child node
must contain a new variable not contained in one of
its ancestors in the oriented clique tree. If it contains
several, add extra cliques between the two until the
children contain just one additional variable. Call
this the intermediate clique tree. Create a matching
undirected graph and run the tree-based elimination
using the variable ordering given by the tree. This will
reproduce the intermediate clique tree. Now reduce
the added cliques by merging them into the original
child. Thus reproducing the original clique tree.

c©Wray Buntine and Petri Myllymäki - 28 - November 14, 2003

Overview

• Linear Elimination

• Clique Trees, Again

• Building Good Clique Trees

• Computation on Clique Trees

c©Wray Buntine and Petri Myllymäki - 29 - November 14, 2003

Computation on Clique Trees

• Covered two node case in discussion of
independence and problem decomposition. Here
we generalize.

• In the general case, the clique tree starts out
without properly normalized probabilities and the
effort is to create these at each clique.

• Step 1: Initialize:
Assign each clique function fD(XD) (for D a clique

in the undirected graph) arbitrarily to a clique in

the clique tree that contains D. Aggregrate these

so each clique C in the clique tree has its function

gC(XC).

c©Wray Buntine and Petri Myllymäki - 30 - November 14, 2003

Initialization, example

Here’s two examples on our favorite DAG.

f1(s,b) f2(s, lc) f3(av, t) f4(toc,x) f5(b, toc,d) f6(lc, toc, t)

c©Wray Buntine and Petri Myllymäki - 31 - November 14, 2003

Computation, cont.

• The algorithm sends messages across each separating set
in both directions in a bidirectional sweep.

• Have separating set Z between cliques CR on the right and
CL on the left. Let XR be all variables in cliques to the right
(CR and others). The message (computed recursively in
the algorithm)

mCR,CL(XZ) = ∑
XR/Z

∏
C on right of Z

gC(XC)

is the message from CR to CL.
• These contribute to a solution as follows:

p(Z) = mCR,CL(XZ)mCL,CR(XZ)

p(C) = gC(XC) ∏
C′ connects to C with sep.set Z

mC′,C(XZ)

c©Wray Buntine and Petri Myllymäki - 32 - November 14, 2003

Computation, example

The message going to the left for separating set Z

mL(lc, toc) = ∑
x,b,d,s

f1(s,b) f2(s, lc) f4(toc,x) f5(b, toc,d)

The message going to the right

mR(lc, toc) = ∑
av,t

f3(av, t) f6(lc, toc, t)

Finally, p(lc, toc) = mL(lc, toc)mR(lc, toc).

c©Wray Buntine and Petri Myllymäki - 33 - November 14, 2003

Computation, cont.

• Step 2: Make Consistent.
Do in parallel for each clique C and each separating
set Z to another clique C′: when all other separating
sets Z′ connecting C′′ for C have received messages
mC′′,C(XZ′), then send message

mC,C′(XZ) = ∑
C/Z

gC(XC) ∏
sep.set (Z′,C′′)6=(Z,C′)

mC′′,C(XZ′)

• Computation in the inner loop is O(2|C|) for
boolean variables.

c©Wray Buntine and Petri Myllymäki - 34 - November 14, 2003

Computation, cont.

• Step 3: Solve.
When everything has settled, the local clique
probabilities can be computed from:

p(C) = gC(XC) ∏
C′ connects to C with sep.set Z

mC′,C(XZ)

so can be solved to give an answer.

• The tree-width of the clique tree is T = max j |Xj|−
1, one off the size of the largest clique.

• Many NP-complete problems solvable in O(C2T)
for C the number of cliques in the tree for the
problem.

c©Wray Buntine and Petri Myllymäki - 35 - November 14, 2003

Implementation Notes
• Parallel message passing made sequential as

follows:
Choose a single node as root and orient tree
accordingly. Start message passing upwards from
leaves by postorder traversal to pass messages up
the tree, to root, and then preorder traversal to pass
messages in opposite direction down to leaves.

• The algorithm relies on repeatedly summing over
large multi-dimensional tables.

• Thus construction of the loops so they operate
quickly is the key step. cf. Lapack.

• The tables in each clique need to be marginalized
in different orders, for different separating sets,
so the ordering of variables in the table is
important.

c©Wray Buntine and Petri Myllymäki - 36 - November 14, 2003

Next Week

• Review Prof. Tirri’s notes on Proportions.

c©Wray Buntine and Petri Myllymäki - 37 - November 14, 2003

