
Lecture 5

Learning with Graphs

• We look at the basic theory behind learning
graphical models.

• We wont look at the causal side.
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Overview

• The Search Space

• Independence

• Evidence

• The Exponential Family

• Putting it All Together
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The Parametric Model Space
• For K binary variables:

– 2K data vectors
– 22K

sets of data vectors

• The saturated model (graph with all K(K −1)/2
arcs present) has 2K parameters.

• Worst case analysis shows O(2K) examples
needed to learn DAGs, and the factor a low order
polynomial in error and confidence (see Hoffgen
’93; Friedman and Yakhini ’96).

• If we restrict graphs to no more than P parents,
this becomes worst case analysis gives O(2P) (see
Hoffgen ’93).

c©Wray Buntine and Petri Myllymäki - 2 - November 28, 2003



The Space of Graphs

• There are CK
2 = K(K − 1)/2 arcs on a graph with

K variables, thus there are 2K(K−1)/2 possible
undirected graphs.

• For DAGs it is more complex than 3K(K−1)/2 (i.e.,
each potential arc has 3 possibilities, left,right or
absent) as covered by Volf and Studeny 1999:
– Different DAGs can represent equivalent functional

forms.
– DAGs cannot have cycles.

Number of vertices 2 3 4 5 K

Number of UGs 2 8 64 1024 2K(K−1)/2

Number of equivalent DAGs 2 11 185 8728 < 3K(K−1)/2
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Equivalent DAGS, example

Here are some of the equivalent graphs for our old
favorite.
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Equivalent DAGS
Theorem (quiet easy, various authors): Two DAGs have the
same independence properties iff they have the same shape
(ignoring directions), and moralize to the same undirected
graph.

ab

parents(a)parents(b) ∪A

ab

parents(a)

parents(b)

A

Note: consider two nodes a and b adjacent in the partial order
(so b∈par(a)) represented by the DAG. Lets switch their order.
The new conditional distribution for a, now before b, is

∑
b

p(a |par(a))p(b |par(b)) = p(a |par(b)∪par(a)−{b})

(1) switch their order iff they share the same common parents.

(2) can do initial separate switches independently
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The Search Space

The parametric space for the saturated model
has less dimension than the number of graphs!

• Different graphs may share stand-alone sub-
structures and parametric models.

• Only bother with learning graphs if you really
expect an answer much simpler than the
saturated graph.

• Many ways to restrict this:
– Penalize more complex graphs.
– Allow no more than P parents.
– Fix an ordering of variables to restrict parents.
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Simple Example

Lets look at N samples of boolean data according
to one of two models. The data is totalled into the
table below as “sufficient statistics”.

M1 = M2 =

x1 = 0 x1 = 1 marginal
x2 = 0 n0,0 n1,0 n·,0
x2 = 1 n0,1 n1,1 n·,1
marginal n0,· n1,· N
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Simple Example, Model M1

Model M1 is as follows:

x1 ∼ Boolean(θ0), x2 ∼ Boolean(θ2)

and θ1,θ2 aprior independent. Likelihood is

p(~x1,~x2 |θ1,θ2,M1) = θ n0,·
1 (1−θ1)

n1,· θ n·,0
2 (1−θ2)

n·,1

Using Beta priors on θ1,θ2 with parameters α1,α2,
we get model likelihood of

p(~x1,~x2 |M1) =
Γ(α1 +n0,·)Γ(α2 +n1,·)Γ(α1 +α2)

Γ(α1)Γ(α2)Γ(α1 +α2 +n·,·)
Γ(α1 +n·,0)Γ(α2 +n·,1)Γ(α1 +α2)

Γ(α1)Γ(α2)Γ(α1 +α2 +n·,·)
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Simple Example, Model M2

Model M2 is as follows: x1 ∼Boolean(θ0), x2|x1 = 0∼
Boolean(θ2,0), x2|x1 = 1 ∼ Boolean(θ2,1), where θ2 =
(θ2,0,θ2,1), and θ1,θ2 aprior independent. Likelihood
p(~x1,~x2 |θ1,θ2,M2) is

θ n0,·
1 (1−θ1)

n1,· θ n0,0
2,0 (1−θ2,0)

n0,1 θ n1,0
2,1 (1−θ2,1)

n1,1

Using Beta priors on θ1,θ2,0,θ2,1 with parameters
α1,α2, we get model likelihood of

p(~x1,~x2 |M2) =
Γ(α1 +n0,·)Γ(α2 +n1,·)Γ(α1 +α2)

Γ(α1)Γ(α2)Γ(α1 +α2 +n·,·)
Γ(α1 +n0,0)Γ(α2 +n0,1)Γ(α1 +α2)

Γ(α1)Γ(α2)Γ(α1 +α2 +n0,·)
Γ(α1 +n1,0)Γ(α2 +n1,1)Γ(α1 +α2)

Γ(α1)Γ(α2)Γ(α1 +α2 +n1,·)
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Simple Example, cont.

• M1 has full independence and the likeliihoods
only use marginal statistics.

• M2 is the same for x1 but the x2 component now
splits into two parts, one for each partition x1 = 0
and x1 = 1.

• Both likelihoods p(~x1,~x2 |M1) and p(~x1,~x2 |M2) are
made up of terms on Gamma functions which
form the normalizing constant for the Beta
distribution.

• Their ratio M1 on M2 is a good independence
test (>> 1 supports independence):

Γ(α1 +n·,0)Γ(α2 +n·,1)
Γ(α1 +α2 +n·,·)

Γ(α1)Γ(α2)

Γ(α1 +α2)

Γ(α1 +α2 +n0,·)
Γ(α1 +n0,0)Γ(α2 +n0,1)

Γ(α1 +α2 +n1,·)
Γ(α1 +n1,0)Γ(α2 +n1,1)
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Overview

• The Search Space

• Independence

• Evidence

• The Exponential Family

• Putting it All Together

c©Wray Buntine and Petri Myllymäki - 11 - November 28, 2003



Independence in Learning:
Simple

Likelihood of sample of size N as a vector of data
~x, given model M and parameters θ (possibly a
vector), assuming i.i.d. data:

p(~x |θ ,M ) = ∏
i=1,...,N

p(xi |θ ,M )

The model-level likelihood p(~x |M ) plays a special
role in Bayesian work, and is called the Evidence:

p(~x |M ) =
∫

θ
p(θ |M ) p(~x |θ ,M )dθ

Note it requires a parameter prior.
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Independence: Advanced

Likelihood of sample of size N as (1) a vector of
data ~x, given model Mx and parameters θ (possibly
a vector), and (2) a vector of data ~y|~x, given model
My and parameters φ and (3) assuming i.i.d. data:

p(~x,~y|θ ,φ ,Mx,My) = ∏
i=1,...,N

p(xi |θ ,Mx) · ∏
i=1,...,N

p(yi |xi,φ ,My)

If we further assume parameters for Mx and My are
aprior independent then

p(θ ,φ |~x,~y,Mx,My) = p(θ |~x,Mx)p(φ |~x,~y,My)
p(~x,~y |Mx,My) = p(~x |Mx)p(~y |~x,My)
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Independence: Advanced, cont.

Thus we can treat the independent model case at
two separate models.

Aposterior independence of parameters comes from
likelihood independence and aprior independence.
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Independence: Advanced, cont.

Parameter independence also occurs within a
single conditional distribution. Here we have
p(y|x,θ). We have broken up the input space
(the domain of x) into two parts x = 0 and x = 1
and are building two separate models for each
part.

p(θ |~x,~y,M ) = p(θ0|~x =~0,~y,M )p(θ1|~x =~1,~y,M )

This is known as a partitioned model. A
decision tree (e.g., using Quinlans C4.5)
build’s such a space. Conditional probability
tables in a Bayesian network also form such
a space: they are just a set of probability
vectors for the partition of the space. Likewise
n-grams used as language models in speech
recognition form a partitioned conditional
space.
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Independence: Example

Given data ~x sampled from domain X, suppose we
have selected a particular Bayesian network as our
best model, M . and its various parameters θy, one
set for the table at each node y ∈ X, and we have
aposterior independence for these.

How do we do inference
on new variables without
assigning to unknown
parameters θy? e.g. whats

p(x1,x4 |~x,M )
= Expecp(θ |~x,M ) (p(x1,x4 |θ))
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Independence: Example
This p(x1,x4 |~x,M ) can be found as

= Expecp(θ |~x,M ) (p(x1,x4 |θ))

=
∫

θ

(

∑
x2,x3

p(x1|θ1)p(x2|x1,θ2)p(x3|x1,θ3)p(x4|x2,x3,θ4)

)

p(θ1,θ2,θ3,θ4 |~x,M )dθ

= ∑
x2,x3

Expecp(θ1 |~x,M )p(x1|θ1)Expecp(θ2 |~x,M )p(x2|x1,θ2)

Expecp(θ3 |~x,M )p(x3|x1,θ3)Expecp(θ4 |~x,M )p(x4|x2,x3,θ4)

Note probabilities such as p(x4|x2,x3,θ4) just pull
a value from the table of entries for θ4. Thus if
θ̄k = Expecp(θk |~x,M )(θk), then

= ∑
x2,x3

p(x1|θ̄1)p(x2|x1, θ̄2)p(x3|x1, θ̄3)p(x4|x2,x3, θ̄4)

By parameter independence, the expected value of
the inference is the same as the inference on the
table of expected values.
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Independence: Inference Theory

Suppose you want to evaluate p(U |~x,M ), for U ⊆ X.
Now, X is a discrete domain, and the parameters θy
represent the table of values at each node y ∈ X.

p(U |~x,M ) = Expecp(θ |~x,M )



∑
X/U

∏
y∈X

p(y |parents(y),θy)





Since the entry in the product is just an element
from the table θy for y ∈ X, and we have aposterior
independence of parameters, it follows that

p(U |~x,M ) = p(U | θ̄)

where θ̄y = Expecp(θ |~x,M )(θy).
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Overview

• The Search Space

• Independence

• Evidence

• The Exponential Family

• Putting it All Together
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Terminology

For the simple case, a sample of size N as a vector of
data ~x, given model M and parameters θ (possibly
a vector), assuming i.i.d. data:

Likelihood: p(~x |θ ,M ).
Prior: p(θ |M ).
Posterior: p(θ |~x,M ).
Posterior Utility: Expecp(θ |~x,M ) (utility(θ)).
Evidence: p(~x |M ).
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Terminology, cont.
Likelihood: critical assumption, sometimes chosen for

computational convenience!
Prior: an unavoidable part of the model and should encode

as much information as possible.
Posterior: the logical consequence of the previous two, often

computationally unwieldy.
Posterior Utility: the optimization objective; its inclusion

can make the posterior manageable.

Evidence: useful tool for evaluating the model
and comparing it with others.

• its use sometimes ignores model priors, i.e.,
p(M );

• is used for comparing, evaluating and combining
multiple models;

• is defined via integration and is often only
approximable.
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Evidence: Example

Our data ~x is a mixture
of K Gaussians, for
some unknown K.
Here’s the K = 2 case.

Let MK be a model mixing exactly K Gaussians.
Then:

• Which K do we use? Choosing an MK based on data is
called model selection.

• Why pick just one, how do we use several, M2,M3 and M4
?

• Isn’t MK ⊂MK+1, so why use these, why not stick with M∞?
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Evidence. Example, cont.

We can play with the p(~x |MK) as follows:

• They are comparable to a posterior:

p(MK |~x) ∝ p(~x |MK)p(MK) .

If priors are nearly constant, we can ignore them.
• They standardize by introducing a prior, and

normalizing:

p(MK |~x) =
p(~x |MK)p(MK)

∑K p(~x |MK)p(MK)

• But their computation can be very hard:

p(~x |MK) =
∫

θ
p(θ |MK) p(~x |θ ,MK)dθ
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Evidence. Example, cont.

• The quantities p(~x |MK) for K = 1, . . . , let us
compare the worth of different K (assuming we
can computer or approximate them).

• If one K has dominant p(~x |MK), and things seem
to vanish for larger values, then select that K.

• Strictly speaking, MK is a set of measure zero
in MK+1, and for most computationally tractible
priors, such sets don’t register. So we treat
separately.

• Use M∞ only if you can sort out the priors, math.
and algorithms.
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Evidence. Example, cont.

If p(~x |MK), p(~x |MK+1), p(~x |MK+2) are all quite big,
then use all three and weight predictions with

p(~x |Mk)

∑k=K,K+1,K+2 p(~x |Mk)
for k = K,K +1,K +2

This is called model averaging. It represents the
realistic scenario that you are unsure which model
is best, so hedge your bets and pool their responses.
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Model Averaging

• Averaging over different θ the posterior
parameter values, is expectation or finding the
posterior mean. Done with integration, Monte
Carlo Markov Chain (MCMC), etc.

• But when we average over different models M

it is called model averaging. Done similarly.
• Early examples: for Decision trees, Buntine

1991, for Bayesian networks, York and Madigan,
1991.

• Can be done with exponentially many models
in some cases for decision trees, n-grams for
language modelling, Bayesian networks: e.g.,
Periera and Singer 1997. Produces near state
of the art in each case.
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Overview

• The Search Space

• Independence

• Evidence

• The Exponential Family

• Putting it All Together
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Multinomial

j ∼ C-dim multinomial(θ1, . . . ,θC)

Functional form θ j for j ∈ [1, . . . ,C] for ∑i=1,...,C θi = 1
Conjugate prior θ ∼ Dirichlet(α1, . . . ,αC)

Conjugate
....posterior

θ ∼ Dirichlet(n1 +α1, . . . ,nC +αC)

for nc = ∑N
i=1 1 ji=c = # < j′s = c >

Evidence Beta(n1+α1, . . . ,nC +αC) / Beta(α1, . . . ,αC)

θ ∼ C-dim Dirichlet(α1, . . . ,αC) means

p(θ |α) =
1

Beta(α1, . . . ,αC)

C

∏
i=1

θ αi−1
i for αi > 0

Beta(α1, . . . ,αC) =
C

∏
i=1

Γ(αi)

/

Γ

(

C

∑
i=1

αi

)
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Gamma

x ∼ Gamma(α > 0,β > 0) means for x ∈ ℜ+,

p(x |α,β ) =
β α

Γ(α)
xα−1e−βx

Functional form
β α

Γ(α)x
α−1e−βx for x ∈ ℜ+

Conjugate prior β |α ∼ Gamma(α0,β0)
Conjugate
....posterior

β |α ∼ Gamma(Nα +α0,∑N
i=1 xi +β0)

Evidence
β α0

0 Γ(Nα+α0)

Γ(α0)(∑N
i=1 xi+β0)

Nα+α0
for α fixed
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Gaussian

y|x ∼ Gaussian(x†θ ,σ 2)

Functional form 1√
2πσ exp

(

− 1
2σ (y− x†θ)2

)

for y ∈ ℜ,x ∈ ℜd

Conjugate prior
θ |σ ∼ d-dim Gaussian(θ0,

1
σ2Σ0),

σ−2 ∼ Gamma(α0/2,β0/2)

Conjugate
....posterior

θ |σ ∼ d-dim Gaussian(θ , 1
σ2Σ),

σ−2 ∼ Gamma((α0 +N)2,2/β),

for Σ = Σ0 +∑N
i=1 xix

†
i , θ = Σ−1

(

Σ0θ0 +∑N
i=1 yixi

)

,

for β = ∑N
i=1(yi−θ †

xi)
2 +(θ −θ0)

†Σ0(θ −θ0)+β0

Evidence det1/2 Σ0

πN/2 det1/2 Σ
Γ((α0+N)/2)β (α0+N)/2

Γ(α0/2)β α0/2
0
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Multi-dimensional Gaussian

x ∼ d-dim Gaussian(µ,Σ) gives probability

det1/2 Σ
(2π)d/2

exp

(

−1
2
(x−µ)†Σ(x−µ)

)

for x ∈ ℜd

S ∼ d-dim Wishart(α,Σ) gives probability

det−α/2 Σ detα−d−1/2 S

2dα/2 πd(d−1)/4 ∏d
i=1 Γ((α +1− i)/2)

exp

(

−1
2
traceΣ−1S

)

for S,Σ symmetric positive definite matrices in ℜ of
dimension d, µ a vector in ℜ of dimension d, α ∈ ℜ
such that α ≥ d.
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Multi-dimensional Gaussian,
cont.

Conjugate prior
µ|Σ ∼ Gaussian(µ0,N0Σ),

Σ ∼ Wishart(δ0,S0)

Conjugate
....posterior

µ|Σ ∼ Gaussian(µ,(N +N0)Σ),
Σ ∼ Wishart(N +δ0,S +S0)

for µ = x+ N0
N+N0

(µ0− x),

for S = ∑N
i=1(xi− x)(xi− x)†

Evidence
detδ0/2 S0

(π)dN/2 det(δ0+N)/2(S+S0)

Nd
0

(N+N0)d ∏d
i=1

Γ((δ0+N−1−i)/2)
Γ((δ0−1−i)/2)
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The Exponential Family

A vector of measurements ~x, a vector of T functions
~t(~x) and some parameters ~θ also of dimension T :

q(~x |~θ) =
1

Yt(~x)Zt(~θ)
exp
(

~t(~x)†~θ
)

.

where ~µt ≡ Expecq(~x |~θ)(~t(~x))

Zt tk(~x) θk µt,k√
2πσ exp(µ2/2σ2) x, x2 µ

σ2, − 1
2σ2, µ, σ 2 + µ2

1 xk logαk Nαk
∏k Γ(αk)
Γ(∑k αk)

logxk αk −1 Ψ0(αk)−Ψ0 (∑k αk)
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The Exponential Family, cont.

Two key definitions:

~µt ≡ Eq(~x |~θ){~t(~x)} =
∂ logZt

∂ ~θ
,

~Σt ≡ Eq(~x |~θ){(~t(~x)−~µt)(~t(~x)−~µt)
†} =

∂ 2 logZt

∂ ~θ∂ ~θ
=

∂ ~µt

∂ ~θ
.

Exponential family are always unimodel, and
moments of~t(~x) and exp(~t(~x)) found by manipulating
Zt. Also,

I(q(~x |~θ)) = Eq(~x |~θ){logYt(~x)}+ logZt −~µ†
t
~θ
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Evidence and Multivariate
Models

These graphs all
represent the same
assumptions. For
clean aposteriori
independence of
the parameters for
θa,θb,θc,θd, we need
apriori independence.

Suppose we have finite discrete variables a,b,c,d. If
we want aposteriori independence to happen for any
order of the graph, then the priors must be Dirichlet.
If the variables a,b,c,d are Gaussian, then the priors
must be Gaussian-Wishart. (Heckerman and Geiger
1995-1997).
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Overview

• The Search Space

• Independence

• Evidence

• The Exponential Family

• Putting it All Together
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One Algorithm

One algorithm for learning Bayesian networks.
Works with all Discrete or all Gaussian variables.

1. Pick and ordering of the variables X.
2. For each variable x ∈ X, search the space of

conditional models for it using any parent set
from those before it in the order.

3. Evaluate each such conditional model using
evidence. Save the best each variable x ∈ X and
record their evidence and values.

4. Pool the individual conditional model to form the
full joint model.
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One Algorithm, cont

The evidence for the discrete case is given as
follows:

Suppose we have the conditional model of x
conditioned on parents(x). Let x be a C-valued
discrete. If this conditional model is a fully
partitioned model with a separate probability vector
for each of the values y ∈ Domain(parents(x))
represented as θy. The prior on θy is a C-dimensional
Dirichlet with C-dimensional parameter vector ~αx
independent of y.

Let the count of data with x = c when parents(x) = y
be nc,y. The C-dimensional vector of these for inputs
y is denoted ~n·,y.
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One Algorithm, cont

Then the evidence for this conditional model for x
is:

∏
y∈Domain(parents(x))

Beta(~αx + ~n·,y)
Beta(~αx)

You might initialize ~αx as follows. Let C-dimensional
vector ~mx be the observed probabilities of the C-
valued variable x. Let ~αx = 2∗~mx. This is called an
empirical prior.

We are working on a perfectly partitioned space. We
have a separate probability vector for each variable x,
and for each assignment to its parents(x) = y. Each
such vector is evaluated on the merits of the sample
it sees according to the standard evidence formula
for the multinomial distribution.
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Next Week

• Do your project and term paper!
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