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Overview of Part One

• Graphs and probabilities

• Directed graphs
• Markov properties

• Undirected graphs
• Examples
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Probabilistic Graphical Models
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Rules of Probability

• Sum rule

• Product rule
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Frequentist View of Probabilities

• Limit of infinite number of trials

• Example: 

“the probability of this coin landing heads is 0.52”

• Defined as fraction of heads in the limit of an infinite 
number of trials
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Bayesian View of Probabilities

• Quantification of degree of belief, e.g.

“the probability that it will rain 
tomorrow is 0.3”

• Not possible to repeat “tomorrow”
• Subjective and dependent on prior knowledge
• Frequentist probabilities are a special case

• In practice: (i) motivates averaging, (ii) may be 
computationally intensive (but see later)
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Bayes Theorem

• From the product rule

• From the sum rule, the denominator can be written
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Role of the Graphs

• New insights into existing models

• Motivation for new models
• Graph based algorithms for calculation and computation 

(c.f. Feynman diagrams)
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Overview of Part One

• Graphs and probabilities

• Directed graphs
• Markov properties

• Undirected graphs
• Examples
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Decomposition

• Consider an arbitrary joint distribution

• By successive application of the product rule

• Diagrammatically:

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

General Case

• Consider arbitrary joint distribution

• By successive application of the product rule

• Can be represented by a graph in which each node has 
links from all lower-numbered nodes (i.e. a fully 
connected graph)
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Directed Acyclic Graphs

• No directed cycles �� �� can number nodes so that there 
are no links from higher numbered to lower numbered 
nodes
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Directed Acyclic Graphs (cont’d)

• General factorization

where       denotes the parents of i

• Missing links imply conditional independencies
• Model specified by graph and by conditional probabilities
• Ancestral simulation can be used to sample from the joint 

distribution

• If a variable with no children is unobserved it can be 
removed from the graph to obtain a marginal distribution
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Importance of Ordering
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Directed Factorization Property

• A distribution which can be factored according to a 
particular directed graph is said to respect the directed 
factorization property 

• View the graph as a filter
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Examples of Directed Graphs

• Hidden Markov models

• Kalman filters
• Factor analysis

• Probabilistic principal component analysis
• Independent component analysis

• Mixtures of Gaussians
• Probabilistic expert systems
• Sigmoid belief networks

• Hierarchical mixtures of experts
• Etc…

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Example: Univariate Gaussian
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Example: Mixture of Gaussians

• Conditional distributions

• Marginal distribution
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Example: Bayesian Mixture of Gaussians

• Priors over parameters
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Exponential Family

• How should we choose the conditional distributions?

• Considerable simplifications arise if we choose 
distributions from the exponential family

• Includes many well-known distributions (Gaussian, 
Dirichlet, Gamma, Multi-nomial, Wishart, Bernoulli, …)

• Likelihood function (a function of   ) depends on data set 
only through sufficient statistics of fixed dimension
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Illustration: Uni-variate Gaussian

• Precision (inverse variance) 

• In standard form
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Conjugate Priors

• Choose prior distribution so that posterior distribution has 
same functional form as the prior

• Hence posterior is of the form

• Can interpret prior as    effective observations of value

• Examples: 
– Gaussian for the mean of a Gaussian
– Gamma for the precision of a Gaussian

– Dirichlet for the parameters of a discrete distribution
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Conditioning on Evidence

• Group variables into hidden (or latent) H and visible (or 
observed) V

• Hidden variables may have a specific interpretation, or 
may be introduced to permit a richer class of distribution
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Overview of Part One

• Graphs and probabilities

• Directed graphs
• Markov properties

• Undirected graphs
• Examples
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Conditional Independence

• Suppose A is independent of B given C

• Phil Dawid’s notation

• Equivalently

• Conditional independence crucial in practical applications 
since we can rarely work with a general joint distribution
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Markov Properties

• Can we determine the conditional independence 
properties of a distribution directly from its graph?

• Yes: “d-separation”
• Start by considering three simple examples
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Markov Properties: Example 1

• Joint distribution over 3 variables specified by the graph

• Note the missing edge from A to C
• Node B is “head-to-tail” with respect to the path A–B–C

• Joint distribution
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Markov Properties: Example 1 (cont’d)

• Suppose we condition on node B

• Hence

• Note that if B is not observed we have

• Informally: observation of B “blocks the path” from A to C
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Markov Properties: Example 2

• 3-node graph

• Joint distribution

• Node B is “tail-to-tail” with respect to the path A–B–C

• Again, note missing edge from A to C 
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Markov Properties: Example 2 (cont’d)

• Now condition on node B

• We have

• Hence 
• Again, if B is not observed
• Informally: observation of B “blocks the path” from A to C
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Markov Properties: Example 3

• Node C is “head-to-head” with 
respect to the path A–C–B

• Joint distribution 

• Note missing edge from A to B
• If C is not observed we have

and hence 
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Markov Properties: Example 3 (cont’d)

• Suppose we condition on node C

• Hence 

• Informally: an unobserved head-to-head node C “blocks 
the path” from A to B, but once C is observed the path is 
unblocked

• Note: observation of any descendent of C also unblocks 
the path
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Explaining Away

• Illustration

Observation of “Fuel Gauge” renders “Battery” and “Fuel” 
conditionally dependent
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d-separation

• Stated here without proof
• Consider three groups of nodes A, B, C

• To determine whether the conditional independence 
statement                  is true, consider all possible paths 
from any node in A to any node in B

• Any such path is blocked if there is a node      which is 
head-to-tail or tail-to-tail with respect to the path and

or if the node is head-to-head and neither the 
node, nor any of its descendents, is in C
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d-separation (cont’d)

• Note that a particular node may, for example, be head-to-
head with respect to one particular path and head-to-tail 
with respect to a different graph

• If all possible paths are blocked then 

• Consider this procedure as a filter applied to a probability 
distribution

• A distribution which satisfies all of the conditional 
independence properties implied by d-separation on the 
graph is said to respect the directed global Markov 
property 

• Theorem:
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d-separation (cont’d)

• Illustration: Bayesian mixture of Gaussians
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Overview of Part One

• Graphs and probabilities

• Directed graphs
• Markov properties

• Undirected graphs
• Examples
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Undirected Graphs

• Simpler definition of separation for undirected graphs
• Sets A and B of nodes are separated by a third set C if 

every path from any node in A to any node in B passes 
through a node in C
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Undirected Graphs (cont’d)

• The property of undirected graph separation says that if A
and B are separated by C in the graph then

• We can consider a graph as a filter: any distribution 
which satisfies all of the conditional independence 
statements implied by the graph is said to satisfy the 
undirected global Markov property     with respect to that 
graph
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Undirected Factorization

• Definitions: (i) a set of nodes is complete if there is a link 
from each node to every other node in the set; (ii) a 
clique is a maximal complete set of nodes

• Example: the following graph has cliques {A,B,C} and 
{B,C,D}

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Undirected Factorization (cont’d)

• A probability distribution is said to factorize with respect 
to a given undirected graph if it can be expressed as the 
product of positive functions over the cliques of the graph

where                  are the clique potentials, and Z is a 
normalization constant
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Undirected Factorization (cont’d)

• A slightly more general representation (which will come 
in useful later) is the product of clique potentials divided 
by the separator potentials (a separator between two 
cliques is the set of nodes they have in common)

• For the previous example the cliques are {A,B,C} and 
{B,C,D}, and the separator set is {B,C}
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Undirected Factorization (cont’d)

• A distribution which factorizes according to a particular 
graph is said to respect the undirected factorization 
property

• Theorem: for any graph and any distribution

• Theorem (Hammersley-Clifford): for strictly positive 
distributions and arbitrary graphs

• Also               for any distribution if, and only if, the graph 
is triangulated (see later)
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Directed versus Undirected

• There exist undirected graphs which cannot be re-
expressed as directed graphs, and vice versa

• Examples:
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Directed versus Undirected (cont’d)

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Markov Revisited

• We can now formulate a simpler definition of         with 
the aid of undirected graph separation

• Simply dropping the arrows and applying undirected 
graph separation clearly fails because of explaining away

• We can resolve this by adding links which connect all of 
the parents for each node – called moralization

• Example:

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Markov Revisited (cont’d)

• However, moralization alone would suppress some of the 
conditional independencies, e.g.               in the graph

• The problem arises from the node W since it is not part of 
the conditioning set
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Directed Markov Revisited (cont’d)

• Definition: a subset of nodes within a DAG is an ancestral
set if, for every node in the set, all ancestors of that node 
are also in the set

• Theorem: if a probability distribution factorizes according 
to a directed acyclic graph, then               whenever A and 
B are separated by C in the moral graph of the smallest 
ancestral set containing
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Overview of Part One

• Graphs and probabilities

• Directed graphs
• Markov properties

• Undirected graphs
• Examples
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Example: State Space Models

• Hidden Markov model

• Kalman filter
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Example: Factorial HMM

• Multiple hidden sequences

• Avoid exponentially large hidden space
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Example: Markov Random Field

• Application to image super-resolution (Freeman et al.)

yk
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low resolution

high resolution
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Example: Coupled HMM

• Fusion of audio and video signals
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Summary of Part One

• Probabilistic graphs provide insights into existing models 
and motivate the design of new models

• Directed and undirected graphs together encompass a 
wide range of models of practical interest 

• The conditional independence (Markov) properties of 
complex distributions can be determined graphically
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Viewgraphs and tutorials available from:

research.microsoft.com/~cmbishop


