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Location positioning problem
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The positioning problem
• Given some location-dependent observations O, measured 

by a mobile device, determine the location L of the device
• Why is this a good research problem?

– The goodness of different solutions is extremely easy to 
validate (just go to a known location and test)

– The results have immediate practical applications
» Location-based services (LBS)
» FCC Enhanced 911:

• Network-based solutions: error below 100 meters for 67 percent of calls,
300 meters for 95 percent of calls 

• Handset-based solutions: error below 50 meters for 67 percent of calls, 150 
meters for 95 percent of calls
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Cell ID
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Cell-id in urban positioning

- errors > 500m common
+ simple
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Cell ID errors
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Enhanced Observed Time 
Difference (E-OTD)
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Problems with E-OTD 
in urban positioning

- multi-paths
- no line of sight to BS
- extra hardware
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”Theory”
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”Practice”
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The signal propagation approach

Theory Reality
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Empirical modeling in 
urban positioning

+accurate
+handset or network based
-calibration measurements required
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A probabilistic approach 
to positioning

• A probabilistic model assigns a probability for each 
possible location L given the observations O.
– P(O | L) is the conditional probability of obtaining 

observations O at location L.
– P(L) is the prior probability of location O. (Could be 

used to exploit user profiles, rails etc.)
– P(O) is just a normalizing constant.

• How to obtain P(O | L)? Empirical observations + 
machine learning

P(O | L) P(L)
P(O)

P(L | O) =
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Tracking with Markov models
• Typically we have a sequence (history) of observations  O1,…,On, 

and wish to determine P( Ln | On)
• Assumption: P(Ot | Lt) are known, and given location Lt, the 

observation Ot is independent of the rest of the history
• The model: a hidden Markov model (HMM) where the locations Lt

are the hidden unobserved states
• The transition probabilities P(Lt | Lt-1) can be easily determined 

from the physical properties of the moving object

L1
L1 L2

L2 Ln-1
Ln-1 Ln

Ln…

O1
O1 O2

O2 On-1
On-1 On
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One more assumption
• The observation at time t typically consists of 

several measurements (e.g., strengths of signals 
from all the transmitters that can be heard)

• If the wireless network is designed in a reasonable 
manner (the transmitters are far from each 
other), it makes sense to assume that the 
individual observations are independent, given the 
location

• The “Naïve Bayes” model Lt
Lt

Ot1
Ot1 Ot2

Ot2 Otm
Otm…
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Tracking as probabilistic inference

• As our hidden Markov model is a tree, we can compute the 
marginal of any Lt, given the history On, in linear time by 
using the simple forward-backward algorithm discussed in 
Lecture 3

• Alternatively, we can compute the maximum probability 
path L1,…,Ln given the history (this is known as the Viterbi
algorithm)

• Kalman filter: all the conditional distributions of the 
HMM model are normal distributions (linear dependencies 
with Gaussian noise)
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Recursive tracking
• Assume that P(Ln-1 | On-1) has been computed.
• Our model defies the transition probabilities P(Lt | Lt-1) and 

the local observation probabilities P(Ot | Lt)
• Now P(Ln | On) α P(Ln, On) 

= P(On | Ln, On-1) P(Ln , On-1) 

= P(On | Ln) Σ Ln-1 P(Ln , Ln-1 , On-1) 

α P(On | Ln) Σ Ln-1 P(Ln | Ln-1)P(Ln-1 | On-1) 
• With a Kalman filter, the recursive process operates all the 

time with Gaussians
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GSM-positioning trials



10

Page 10

©Petri Myllymäki & Henry Tirri 2003 19

NYC Trial 2001

©Petri Myllymäki & Henry Tirri 2003 20

Details

• Covering downtown Manhattan (10th - 114th St)
• Data gathering by car
• Modeling: 10 person days
• Target accuracy: less than 911 handset 

requirements
• Tests using cars
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Accuracy of NYC Trial 2001

• 20166 points
• tracking; testing done in a car;

98.6%67%

17m

95%

57m 
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Trials: Manhattan 2002
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Challenges

• “real 911” simulation
– No tracking information
– Only up to 60 seconds of signal 

measurements
• Target accuracy: “theater level”
• Indoor testing (without indoor modeling)
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Accuracy NYC Trial 2002
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• 30 points
• static; testing done by walking;

67%
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WiFi-positioning trials

From: P.Myllymäki, T. Roos, H.Tirri, P.Misikangas and 
J.Sievänen. A Probabilistic Approach to WLAN User Location
Estimation. International Journal of Wireless Information
Networks, Vol. 9, No. 3, July 2002.

More information: www.ekahau.com
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WLAN: average errors
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WLAN: 90% errors
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WLAN: sensitivity
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WLAN: calibration trade-off
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…more:
• P.Myllymäki, T. Roos, H.Tirri, P.Misikangas and J.Sievänen: 

A Probabilistic Approach to WLAN User Location
Estimation. International Journal of Wireless Information
Networks, Vol. 9, No. 3, July 2002.

• T. Roos, P.Myllymäki, H.Tirri: A Statistical Modeling
Approach to Location Estimation. IEEE Trans. on Mobile 
Computing, Vol. 1, No. 1, January-March 2002, 59-69.

• Fox, Hightower, Liao, Schulz, Borriello: Bayesian Filtering
for Location Estimation. IEEE Pervasive Computing, Vol. 2, 
No. 3, July-September 2003, 24-33.

• Demo: http://cosco.hiit.fi/demos.html
• Software: www.ekahau.com


