Petri Myllym i" &

25 ; Complex Systems Com
rsﬂ}j oﬁhﬁqkl & Helsinki IH§t|tute for Inf

1._"1"

i

|
6
™,
+10N 1

e

Page 1




The positioning problem

+ Given some location-dependent observations O, measured
by a mobile device, determine the location £ of the device

+ Why is this a good research problem?

- The goodness of different solutions is extremely easy to
validate (just go to a known location and test)

- The results have immediate practical applications
» Location-based services (LBS)
» FCC Enhanced 911:

Network-based solutions: error below 100 meters for 67 percent of calls,
300 meters for 95 percent of calls

+ Handset-based solutions: error below 50 meters for 67 percent of calls, 150
meters for 95 percent of calls
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Cell ID

" variable cell-size:
n, 50 m (indoors) == 30 km (rural areas)
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Cell-id in urban positioning

i

- errors > 500m common
+ simple

Cell ID errors
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Enhanced Observed Time
Difference (E-OTD)

.Llr hyperbola: d3-d2 = constant

$. ©od \ hg.fp;rbola: d1-d2 = constant
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Problems with E-OTD
in §rban positioning

- multi-paths
- no line of sight to BS
- extra hardware
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The signal propagation approach

Theory
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Empirical modeling in
urban positioning
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+accurate
+handset or network based
-calibration measurements required
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A probabilistic approach
to positioning
PO | L) P(L)
P(O)

* A probabilistic model assigns a probability for each
possible location L given the observations O.

- P(O | L) is the conditional probability of obtaining
observations O at location L.

- P(L) is the prior probability of location O. (Could be
used to exploit user profiles, rails etfc.)

- P(O) is just a normalizing constant.

+ How to obtain P(O | L)? = Empirical observations +
machine learning

P(L|O)=
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Tracking with Markov models

» Typically we have a sequence (history) of observations O,,...,0,,
and wish to determine P( L, | O")

* Assumption: P(O, | L,) are known, and given location L,, the
observation O, is independent of the rest of the history

* The model: a hidden Markov model (HMM) where the locations L,
are the hidden unobserved states

* The transition probabilities P(L, | L,,) can be easily determined
from the physical properties of the moving object
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One more assumption

« The observation at time t typically consists of
several measurements (e.g., strengths of signals
from all the transmitters that can be heard)

* If the wireless network is designed in a reasonable
manner (the transmitters are far from each
other), it makes sense to assume that the
individual observations are independent, given the
location

* The "Ndive Bayes" model
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Tracking as probabilistic inference

 As our hidden Markov model is a tree, we can compute the
marginal of any L, given the history O", in linear time by
using the simple forward-backward algorithm discussed in
Lecture 3

 Alternatively, we can compute the maximum probability
path L,,...,L, given the history (this is known as the Viterbi
algorithm)

» Kalman filter: all the conditional distributions of the
HMM model are normal distributions (linear dependencies
with Gaussian noise)
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Recursive tracking

 Assume that P(L,_, | O™") has been computed.

 Our model defies the transition probabilities P(L, | L,_,) and
the local observation probabilities P(O; | L,)

* Now P(L, | O™ a P(L,, O")
=P(O, | L,, O™ P(L, , O™")
=PO,|L) X, , PL,,L,;,0")
o P(On | Ln) 2 Lp-1 P(Ln | Ln-l)P(Ln-l | On-l)

» With a Kalman filter, the recursive process operates all the
time with Gaussians
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GSM-positioning trials
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NYC Trial 2001
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Details

Covering downtown Manhattan (10th - 114th St)
+ Data gathering by car
Modeling: 10 person days

+ Target accuracy: less than 911 handset
requirements

- Tests using cars
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Accuracy of NYC Trial 2001

67% | 95% | 98.6%
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Trials: Manhattan 2002
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Challenges

* "real 911" simulation
- No tracking information

- Only up to 60 seconds of signal
measurements

+ Target accuracy: “theater level”
* Indoor testing (without indoor modeling)
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Accuracy NYC Trial 2002

67% 95% | 98.6%
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WLAN: average errors
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WLAN: 90% errors
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WLAN: sensitivity
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WLAN: calibration trade-off
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...more:

* P.Myllymdki, T. Roos, H.Tirri, P.Misikangas and J.Sievdnen:
A Probabilistic Approach to WLAN User Location
Estimation. International Journal of Wireless Information
Networks, Vol. 9, No. 3, July 2002.

* T. Roos, P.Myllymdki, H.Tirri: A Statistical Modelin
Approach to Location Estimation. TEEE Trans. on Mobile
Computing, Vol. 1, No. 1, January-March 2002, 59-69.

+ Fox, Hightower, Liao, Schulz, Borriello: Bayesian F/'/fe/"/hg
for Location Estimation. IEEE Pervasive Computing, Vol. 2,
No. 3, July-September 2003, 24-33.

« Demo: http://cosco.hiit.fi/demos.html

- Software: www.ekahau.com
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