Tutorial on Graphical Models

David Heckerman
Microsoft Research

Valencia 7
June 1, 2002

Graphical Model

A graphical representation of a (typically highly
multivariate) set of joint distributions

= |ntuitive interface for modeling
= Modular: Useful tool for managing complexity
m Useful data structure for applying Bayes rule
efficiently
= Common formalism for many models
— Facilitates transfer of ideas between communities
— Facilitates design of new systems

Overview

m ntroduction to graphical models

= Applications without data: Expert systems
m Learning from data

= Applications of learning

= Influence diagrams: Graphical models for
decision making and causal reasoning

Two popular classes of graphical models

Undirected Graph (UG; MRF; Markov Network)

oo

Directed acyclic graph (DAG; Bayesian Network)

oo

Other types of graphical models

Chain graphs: ° °
I—I W)

Directed cyclic graphs:

SN

Graphical Model

Assumption for intro: Joint distribution
known with certainty

m Domain: X = (Xy,....X,)

m Graphical model = structure + collection of local
distributions

m Structure:
—Nodes ~ variables
—Missing arcs ~ conditional independence

= Independencies + local distributions => joint
distribution (“modularity”)
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Directed Acyclic Graphs

e.g. Wright, 1921; Good, 1961; Howard & Matheson 1981; Pearl 1988

e

POX. %, %) = P(%) P(X; [%) P(X [¥%.)

Directed Acyclic Graphs

The DAG structure encodes those independencies
that permits the factorization:

pO) =[] p(x [pa)
i = parents of x,

Namely, for any total ordering of the variables
consistent with the DAG:

P(X | %, %) = P(X% |pay)

Equivalently, each variable is independent of its
non-descendants given its parents
(Howard & Matheson 1981).

Directed Acyclic Graphs

Thus, independencies + local distributions yield joint:
pO) =[] p(x [pa)
i

local distributions

Caveat: Local distributions may exist but joint does not.

Undirected Graphs
e.g. Darroch, Lauritzen, & Speed 1980; Whittaker, 1990

Assumption to simplify presentation: p(x) is positive.

oo

X, O0X, | X,

Undirected Graphs

Each variable is independent of all other variables
given its neighbors in the graph.

If p(x) is positive, then (Hammersly-Clifford-Besag):

P09 = [ f(x.)
i ™ maximal cliques

of the graph
Example: grap

%
@Q/\@

P(X) = F1(x, %) T, (%, X3)
03 (%, %,) [F (X4, %)

Undirected Graphs

p0) = [ f:(x,)

When working with contingency tables or the case
where p(x) is a multivariate Gaussian:

Can generate joint from clique marginals p(X;;)
using lterative Proportional Scaling (Deming and
Stephan 1940).

Note: p(x;) are local distributions.
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Iterative Proportional Scaling

E.g., for contingency table:
- Intialize p,4(X) to be uniform

- lterate, cycling over cliques c;:

p(x;)

pnew (X) pold (X) Old ( )

Undirected Graphs — Alternate Form
e.g., Levy 1948, Besag 1974

Each variable is independent of all other variables
given its neighbors in the graph.

Use “local distributions” p(x|neighbors;)

oo

P(X1l%2) P(Xal%q:%3) P(X3l%;)

Undirected Graphs — Alternate Form
Each variable is independent of all other variables
given its neighbors in the graph.

Use “local distributions” p(x|neighbors;)

oo

P(X1l%;) P(Xal%q,%3) P(X1l%2)

Generate p(x) via Gibbs sampling
(Heckerman, Chickering, Meek, Rounthwaite, and Kadie 2000)

p(x |neighbors ) = p(x [ X\ %)

DAGs <> UGs

4

decomposable
graphical models

OO0
()~

Summary
Model Local distrbns Joint recovery
DAG p(xlpay) multiplication
UGps p(xg) IPS
UGyc p(xilny) Gibbs sampling
DAGs <> UGs

X, 0X, |x2,x
X, O X, | Xy, Xy

decomposable
graphical models

OO0
()~




DAGs <> UGs

& ®
S

“v-structure”
X, OX,le
_'(Xl g Xz | Xa)

()
@5\@

X, O X, | Xy, X,
X, O X, | Xy, Xy

decomposable
graphical models

OO0
()~

Explaining Away
Pearl 1988

cold O lung cancer
= (cold O lung cancer | cough)

UGs and non-positive distributions

cond indp

UGps: Those distributions encoded by p(x) =[] f(x,)
UG,,c: Those distributions encoded by irreducible MC

]
=
x
)
1

“Inference” in graphical models

-~ = ®

D p(%) P0G 1%) -+ P(X, | %1-1)

Xprer

D P4 DL P& %)+ D Py [ %00) PO, | %,01)

Inference in graphical models

m Exact methods that exploit UG/DAG structure
e.g., Laurtizen and Spiegelhalter 1988
— Convert to triangulated (decomposable) UG
— Create tree of cliques (running int property)
— Perform tree version of dynamic programming
= Approximation methods needed when largest
cliques contains too many variables
— MCMC (e.g., Geman and Geman 1984)
— Variational methods (e.g., Jordan et al. 1999)
— Loopy propagation (e.g., Murphy et al. 1999)

Graphical models are a common
representation for many models

Finite mixture models
Factor analysis
Hidden Markov model
Kalman filter
Hierarchical models
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Finite mixture model

Factor Analysis

latent,
Normal(0,1)

observed,
linear-regression

latent,
multinomial
observed p(y) = Zk: p(x=k) p(y | x=Kk)
mixing weight of kth
component model
Hidden Markov model
latent,
multinomial @ @ @

YT
observed @ @ @ @

Kalman filter

latent,
linear-regression
d X

observed, ‘ ‘ ‘ ‘

linear-regression @ @ @

)

Hierarchical models

patients’ patients’ patients’
survival from survival from survival from
hospital 1 hospital 2 hospital n

Plates (BUGS)
Spiegelhalter, Thomas, & Best 1999

A compact representation for repetitive structure

@
o

patients, j

hospitals, i
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Advantages of common
representation

m Transfer ideas between research communities
= Design new models

Example: Audio-video fusion
Beal, Attias, & Jojic 2002

Audio scenario

Video scenario

camera
mic.1 mic.2

BNV

| «—)—
sourceat |,

Goal: detect and track speaker

Slide courtesy Beal, Attias and Jojic

Separate audio-video models

][] [=
IR
L B O o
) T oSS

Frame n=1

audio data video data

Slide courtesy Beal, Attias and Jojic

Combined model

o] B [a] [x]

v @)

Hs,0s

J

k) (o)

audio data

Oanid

video data

Slide courtesy Beal, Attias and Jojic

Tracking Demo

.
15%
Y

Slide courtesy Beal, Attias and Jojic

Applications of graphical models

DAGs and UGs:

= Density estimation

m Classification and regression

= Clustering (finite mixture models)

UGs:
= Acausal models
m Spatial processes

DAGs:
= Acausal and causal models
m Expert systems
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DAGs or “Bayesian Networks”
and expert systems

Early competitors to representing uncertainty in expert
systems (late 70s, early 80s)

= MYCIN certainty-factor model (rule-based systems)
m Dempster-Shafer theory

m Fuzzy set theory

m Bayesian probability

Bayesian probability dominant by 1987 (in large part
due to Bayesian Networks)

Examples of expert systems

= MUNIN: Neuromuscular diagnosis
Andreassen, Woldbye, Falck, and Andersen 1987

m Pathfinder: Lymph-node pathology diagnosis
Heckerman, Horvitz, & Nathwani 1989

= QMR-DT: Internal medicine diagnosis
Shwe et al. 1991

m Microsoft Windows Troubleshooters
Heckerman et al. 1995

Print Troubleshooter

=
Local Port
Path OK_ \
Connected
Paper
and Online Data OK
=
OK

Net Cable
Connected,

So simple, a child could do it...

Teenager Designs Award-
Winning Science Project

.. For her science project, which she
called "Dr. Sigmund Microchip,"
Tovar wanted to create acomputer
program to diagnose the probability of
certain persondlity types. Withonly |
answers from afew questions, the
program was &ble to accurately
diagnose the correct personality type
90 percent of thetime.

NI

W

Microchip,” the science project she creaied using the
advanced mathematical formulas that Microsofi Research.
uses to build artificial intelligence programs.

Software

http://www.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html

Learning graphical models from data

Uncertainty in parameters: P(€|m) (assumed smooth)
Uncertainty in model: p(m)

Given finite sample of inf exchangeable data d = (x4,...,X)):
p(ald) =" p(m|d)[ p(al6,m) p(f]d.m) do

p(m|d) 0 p(m) [ p(d] 6,m) p(6Im) dg
.

marginal likelihood
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Marginal parameter prior is not smooth

p(8) = p(@|m,)p(m,)+ p(&|m,) p(m,)

Example for binary X, Y:

-
. I T~
m: 00— .

Methods and approximations

Only parameters uncertain:
m Bayesian — MCMC (e.g., BUGS)
= MAP/ML — EM (e.g., NIPS community)

Both parameters and structure uncertain:

= Bayesian - RIMCMC (Green 1995); MC? (Madigan and
York 1995)

Bayesian model selection for complete data (e.g., Cooper
and Herskovits 1992; Spiegelhalter et al. 1993; Buntine
1994; Heckerman et al. 1995)

Approx Bayesian model selection for incomplete data
(e.g. Friedman 1997; Attias 2000)

Constraint-based methods (Spirtes et al. 2001, Pear| 2000)

Computationally attractive paremeter priors
for DAG models
Geiger and Heckerman 1997, 2002

Challenge: The number of DAG models for n
variables grows super exponentially with n

— Want priors for all DAG models for X to come from a
small number of assessments

— Want closed form for marginal likelihood
Solution: A set of assumptions

Extension of Dawid and Lautitzen’s (1993)
priors for decomposable models

Assumptions

For eligible local distribution families:

m Parameter independence

m (Conjugate priors)

m Complete data

= Equivalent graphs have equivalent priors
= Parameter modularity

Eligible local distribution families

m X=(X,,...,X,) discrete (finite): p(x;|pa;,0) is “full table”

p(x [pa; = j,&,m)ismult(E, .., )
5 = (61Ot )

m X continuous: p(x;|pa;,8;) is linear regression
p(x% |pa;,6,m)=m + zbjixj +N(0,07)
x;0pay
6 =(m.b,07)  Noe: p(x|6) is m.v. Gaussian

Other eligible distribution families

m X=(X,,...,X,) discrete: p(x;|pa;,8) a (probabilistic) decision tree

=1 P(X%|x =1x%,=1)

Pl |% =1%,=2)

p(X; 1% =2)

m X; continuous: p(x;|pa;,8) is a linear regression for each
configuration of the discrete parents of X;;

X; discrete: p(x;|pa;,8) is full table (cont parents not allowed);
p(x|6) is conditional Gaussian (Lauritzen 1992)
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First Assumption: Parameter independence
Speigelhalter and Lauritzen 1990

X discrete:

p© =[] @)

X continuous:

@) =[1 r(@)

Second assumption: Conjugate priors

When p(x;|pa;,8) is a full table:

p(gij) = Dir(aijl’ raijr,)

When p(x;|pa;,8) is a linear regression

p(8) = Normal - gamma

Third assumption: Complete data

Yields fast-to-compute, closed-form formula
E.g., when p(x;|pa;,8) is a full table (Cooper and
Herskovits 1992):
o I (a;)
p(d|m) = :
i=1 j= r(aij + Nij) =

N, :#cases where X, = x* and Pa, = pa/

alj = Zaljk Nlj = Z Nljk
k=1 k=1

r(aijk + Nijk)
r(aijk)

Problem with equivalent models

Two DAGs for X are equivalent if they encode the same
sets of distributions for X.

If each p(x|pa;8)) is full table or linear regression, then two
DAGs for X are equivalent iff they encode the same
independencies.

Example: Three discrete variables; full tables

)&
®—@—® X1|:|X3|X2
00—

Complete network structures encode no
independence

FH—® G —®
FH—® G —®
FFH—® & —®

General test for equivalence

Verma & Pearl 1990: Two DAGs for X encode the same
independencies iff

m They have the same skeleton

= They have the same v-structures Q\QQ
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Problem: Equivalent graphs have different priors
(for almost all hyperparameter values)

Example: X and Y binary; full tables

6, 6,0 6,=6,6,,+(1-6,)8

x yix? Zylx x7ylx yIx
etc.

If each multinomial (bernoulli) has a Dir(1,1) prior, then
a6,

6,
079m2 p( m1|m1)

Pz M) #

Fourth assumption

Equivalent (complete) graphs have equivalent
priors, and hence equal marginal likelihoods

@) M

0
P(6,, Im,) =™

6,

m2

Pl IM,)

Independence + Equivalence => Conjugacy
Geiger and Heckerman 1997, 2002

m Parameter independence

= Equivalent complete graphs have equivalent priors
m Technical conditions

parameters have conjugate distributions

Example: Two binary variables

O—» O

parameter independence
equivalence property

f(8) 9(8) WEy) _i(6) i(Ey) k(E5)
6.1-6) g,1-6)

‘l positivity

PE) = PGy, 65.6,.65) D665 6,6

General discrete case

m Parameter independence
= Equivalent complete graphs have equivalent priors

m p(0) strictly positive

X~mult;  p(f M gree ) = Dir(ay, ..., ay)
\

“hyper Dirichlet”

Characterization of the Dirichlet

m Parameter independence
= Equivalent complete graphs have equivalent priors

m p(0) strictly positive

X~mult;  p(f M gree ) = Dir(ay, ..., ay)
\

“hyper Dirichlet”

Page 10
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Characterization of Normal-Wishart

m Parameter independence
= Equivalent complete graphs have equivalent priors
= n>2; no element of Z1is zero

d

X ~mv.Gaussian; p(é, |mcomplete)

=NW(p,z™)
\

“hyper Normal-Wishart”

Hyperparameters are highly constrained

E.g., discrete case:
P(E, IM e ) = Dir (@, ..., ay), a7 = a p(x =i)

v

complete

N

X |pay!

p(é@

T
xilpa ’

aijk:al:p(xi:klpai:j)

[m )=Dir(a;y,....q;,)

Ll

So far...

parameter independence
equivalence property

hyper distribution

v

(conjugate) p(6lm) for all complete m

Fifth assumption: Parameter modularity
Heckerman, Geiger, and Chickering 1995

If avariable X;in two DAG models have the same
parents, then

p(g; |m,) = p(6; |m,)

Parameter Modularity: Example

my;
my () (%)

p(6,Im,) = p(6,|m,)

The whole story

parameter independence
equivalence property

hyper distribution

v

(conjugate) p(6lm) for all complete m

parameter independence
parameter modularity

(conjugate) p(6jm) for all m

Page 11
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Example: Empty graph for two variables

Given a hyper distribution for (X;,X,), compute
parameter prior for

m:@@

Step 1: Change of variable

hyper distribution
/ N

)00 ()

Step 2: Parameter modularity

hyper distribution

O—® <

\ /

pam %) (%) e, m)

Step 3: Parameter independence

hyper distribution

O—® <

\ /

& )

p(6,,6,|m) = p(6,|m)p(6, |m)

College plans of high-school seniors
Sewall and Shah 1968

Sex: male, female

(ss) Socioeconomic status: low, low mid, high mid, high

1Q: low, low mid, high mid, high

(Pe ) Parental encouragement: low, high

College plans: yes, no

Data: ~10,000 students

College plans of high-school seniors

Analysis:
m Consider DAG models with no latent variables

= P(B]M g mpiee) IS hyper Dirichlet with uniform mean
and sample size 5

= p(m): Uniform

Page 12
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Results

e@

AN

p(m |d) =1.000000

DAG search for large domains

= Finding the DAG model with the highest
marginal likelihood among those structures
with at most k parents is NP hard for k>1.
Chickering 1996

= Monte-Carlo methods

m Greedy/local search
Heckerman et al. 1995

initialize
structure

score
all possible
single changes

perform

saved structure

DAG model selection given incomplete data

m Large sample approximations

— BIC (Friedman 1997)

— Laplace (Thiesson, Meek, Chickering, & Heckerman 1998)
Caveat: DAG models (discrete) with latent variables are Stratified
Exponential Family (Geiger, Heckerman, King, & Meek 2001)

m MCMC methods (e.g., DiCiccio et al. 1995)

m Variational methods (e.g., Attias 2000)

Variational methods for model selection
e.g. Attias 2000, Ghahramani & Beal 2000

Example: Factor analysis Q\’%
7
& ¥ ore

In p(y [m) =In [ dx dé p(y,x,6|m)
ply.x,6)
=In[dxdo g(x,6) 252

n fdxdé q(x,8) 00)

2.|'dx dé q(x,0) In% (Jensen ineq.)

Using a simple, factorized q(x,0)=0,(x)q(6):

p(y.x,6)

| 2 [dxd@ o)l
np(ylm)>.|. x d6 q,(X) 9,(6) an(X) q,(6)

Variational versus Laplace methods

m Laplace: Approximates p(6|d) around one
mode; full dependence

= Variational: p(6|d) can be any convenient
(possibly multi-model) distribution;
convenience usually demands independence
assumptions

Averaging/selecting among UG models

m Decomposable: special case of DAGs;
e.g., Dawid and Lauritzen 1993
= Non-decomposable

— No closed-form marginal likelihood; MCMC used
(e.g. Dellaportas & Foster 1999)

— BICvialPS + EM (e.g., Lauritzen 1996)
— Heuristic method

Page 13
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Heuristic method
Heckerman et al. 2000

oo

P(Xel%2) P(Xal%q,%3) P(Xel%;)

Each local distribution
p(x [neighbors;) = p(x | x\ %)

learned separately

Each local distribution can be learned efficiently (e.qg.,
decision tree learned with Bayesian model selection)

Resulting conditionals are inconsistent, although “almost
consistent”

Microsoft applications of
“Dependency Networks”

m Collaborative filtering (Commerce Server 2002)
m Exploratory data analysis (SQL Server 2000)

Exploratory data analysis

Example: Nielsen data, 2/6/95-2/19/95

Age Showl Show2 Show3
viewerl |73 y n n
viewer 2 | 16 n y y
viewer 3 | 35 n n n
etc.

~400 shows, ~3000 viewers

Decision Tree for OPRAH WINFREY SHOWshow

He Vo tep
CRQATH T

—e =

", nielsen.dmi
Fie et

A

Srongest . .
ks

=
S # % QRAA N B[P

Software

m Dependency networks, DAGs:
http://research.microsoft.com/~dmax/WinMine/
Tooldoc.htm

= Many others:

http://www.cs.berkeley.edu/~murphyk/Bayes/b
nsoft.ntml
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Decision making
vonNeumann & Morgenstern, 1948

The party problem: dry
indoors O}i 50
.3\ rain 60
location

\ 2% 100

outdoors _3@ 0

alternatives uncertainties preferences

MEU principle

indoors O}i 50
53 .3\ rain 60
location

70\ 100

outdoors

&

dry
7 dr

O

E

rai
3

Graphical model for decision making:

Influence Diagrams
Howard & Matheson 1981

decision
node chance node

Party Location

Utility

utility node

Influence diagrams

informational ar

o 4

Party Location @

Solving influence diagrams

m Concert to decision tree and then solve
(Howard & Matheson 1981); computation
grows exponentially with number of nodes

m Solve using influence diagram as data
structure (Shachter 1986)

Causal reasoning, decision making,
and influence diagrams

Causal reasoning is about prediction in the face
of interventions (a.k.a. alternatives)

Stop smoking?| @“@

versus @
Stop smoking? @

Utility

Page 15
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Causal reasoning and influence
diagrams

Alternative formulations of causal reasoning
= Rubin (e.g., 1978)

m Pearl (e.g. 2000)

m Spirtes, Glymous, & Scheines (e.g. 2001)
involve couterfactuals

Dawid 2000: Don’t need couterfactuals

Heckerman & Shacther 1995: If you want
couterfactuals, they are consistent with
decision theory and can be encoded with
influence diagrams

For more information...

Tutorials:

W. Buntine. Operations for Iearnin% with graphical models. Journal of
Artificial Intelligence Research, 2, 159-225 (1994).

D. Heckerman (1999). A tutorial on learning with Bayesian networks. In
Learning in Graphical Models (Ed. M. Jordan). MIT Press.

Books:

R. Cowell, A. P. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer-Verlag. 1999.

F. Jensen (2001). Bayesian Networks and Decision Diagrams. Springer-
Verlog, New York.

M. I. Jordan (ed, 1988). Learning in Graphical Models. MIT Press.
S. Lauritzen (1996). Graphical Models. Claredon Press.

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

J. Pearl (2000). Causality: Models, Reasoning, and Inference. Cambridge
University Press.

P. Spirtes, C. Glymour, and R. Scheines (2001). Causation, Prediction, and
Search, Second Edition. MIT Press.

Software:

http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html|
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