Why information theory?

- "Educational argument"
 - general background
- "Employment argument"
 - information theory is the theory of data (tele)communication
- "Intelligent systems argument"
 - information theoretical concepts are deeply related to learning and adaptation

Information theory for Intelligent systems?

- Many problems are the same
 - data compression and error correcting codes are based on modeling and inference
 - "reliable communication over unreliable channels" vs. "reliable computation with unreliable hardware" (e.g., neural networks)
 - working with probability distributions in high dimensional spaces

What do we learn?

- Central results by Shannon and their consequences
 - the source coding theorem
 - the noisy channel coding theorem
 - "the legend of Minimum Description Length (MDL) Principle"

What is Information theory?

Simply put

- The problem of representing the source alphabet symbols in terms of another system of symbols (0,1)
 - Channel encoding: how to represent the source symbols so that their representations are far apart in some suitable sense ("error-correction")
 - Source encoding: How to represent the source symbols in a minimal form for purposes of efficiency ("compression")

The course focus

- we will address source encoding as it has deep relationship to modeling
- (by the end of the course) abstract from actual codes to code lengths
- discuss information-theoretic principles that can be used as a foundation of statistical modeling

What we will NOT discuss

Noisy communication channels

- An analogue telephone line used by modems (to transmit digital information)
- the radio communication link from Galileo to earth
- a disk drive

Binary symmetric channel

\[
\begin{align*}
P(y = 0 | x = 0) &= 1 - f \\
P(y = 1 | x = 0) &= f \\
P(y = 0 | x = 1) &= f \\
P(y = 1 | x = 1) &= 1 - f
\end{align*}
\]

transmitted symbol

received symbol

How to reach error probabilities of order 10^{-15}?

- The physical solution
- The system solution
“To be more precise”

- **Information theory** answers questions about the theoretical limitations of such systems.
- **Coding theory** discusses how to build practical encoding and decoding systems.

Think!

- What is the error probability for the previous repetition code for a binary symmetric channel with noise level \(f \)?

Some analysis

- For \(f = 0.1 \) the error probability \(p_b = 0.03 \).
- What did we lose?
 - Information transmission rate reduced by factor of three!
- Good?
 - Assume we want a probability of error close to \(10^{-15} \). What would be the rate of the repetition code? (~1/60)

Block codes

- Goal: (very) small probability of error and a good transmission rate.
- Idea: add redundancy to blocks instead of encoding one bit at a time (the origin of “parity”).
- Solution: \((N,K)\) block code adds \((N-K)\) redundant bits to the end of the sequence of \(K \) source bits.

\((7,4)\) Hamming encoding

- Rule: parity in each circle is even.
- \(S = 1000 \)

\[s \] \[t \] \[r \] \[000 \] \[010 \] \[100 \] \[110 \] \[011 \]
\[000 \] \[001 \] \[000 \] \[101 \] \[000 \]
\[000 \] \[001 \] \[111 \] \[011 \] \[111 \]
\[\hat{s} \] \[\hat{t} \] \[\hat{r} \] \[0 \] \[1 \] \[0 \] \[1 \] \[0 \]
(7,4) Hamming decoding

Rule: for the received vector check that the parity in each circle is even; identify the most likely cause.

Performance of the best codes

- We want
 - small error probability p_b
 - large (transmission) rate R
- What points in the (p_b, R)-plane are achievable?
- A good guess: boundary passes through the origin $(0,0)$

Wrong!
(The noisy channel theorem)

- Shannon proved that for any given channel, the boundary meets the R axis at a non-zero value $R=C$
- This channel capacity C for binary symmetric channel is
 \[C(f) = 1 - f \log_2 \frac{1}{f} - (1 - f) \log_2 \frac{1}{1-f} \]

So how many disks?

- For $f = 0.1$ we have $C = 0.53$
- Repetition code gave us $R=1/3$ with $p_b=0.03$
 (3 noisy gigabyte disk drives)
- To reach $p_b=10^{-15}$ we needed 60 noisy gigabyte disk drives
- Shannon says:
 - to reach $p_b=10^{-15}$ you can achieve with 2 disk drives ($2 > 1/0.53$)
 - and to reach $p_b=10^{-24}$ you still need only 2 disk drives!