On Minimum Description Length
Modeling

\
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On Modeling

M-closed
M-open 74

Do you believe that the data generating mechanism
really is in your model class M?
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“non-M-closed” predictive inference

+ Explicitly include prediction (and intervention) in
modeling

“All models are false, but some are useful.”

e
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Minimum Description Length
Principle
+ "MDL" is a method related to modeling, inductive
inference, machine learning...

+ Rissanen 1978-; Barron, Rissanen and Yu 1998
+ tasks

- Model selection

- Parameter estimation

- Prediction
+ "From arithmetic coding to modeling”
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“Model selection”
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+ 1000 bit strings

Descriptive complexity

- 000100010001000100010001 ........ 00010001
- 011101001101000010101010 ........ 10101110
- 111001111110100110111111 ........ 01111011

+ Solomonoff-Kolmogorov-Chaitin complexity

- "shortest possible encoding with the help of L"
- code based on a universal computer language L

- too strong a description language - uncomputability
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+ a good model M captures regular features
(constraints) of the observed data

+ any set of regularities we find reduces our
uncertainty of the data D, and we can use it to
encode the data in a shorter and less redundant

+ There is a trade-off between the model
complexity and fit to the data

qu MDL complex
+ The more we are able to compress a sequence of SIS
data, the more regularity you have detected in
the data and the more you have from the
data (to make predictions of future data)
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" "
- algorithmic, “ideal” MDL (Li and Vitdnyi '97) X sample” space
- MML (Wallace '68, '87) X set of all sequences of n outcomes
o T
- two-part code MDL (Rissanen ‘78, '83) x" set of arbitrary length sequences
+ universal model based MDL (Rissanen '96, Barron, x” set of infinite sequences .
Rissanen, Yu '98, Griinwald '02) P probability distribution over X
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X (countable) data alphabet

A (uniquely decodable) code C is a one-to-one
map from X to {0.1}*

Lc(x) denotes the length in bits needed
to describe X
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+ let Pbe a probability distribution. Since
EXP(x) <1
« only very few X can have large probability

- let C be a code for {0.1}". Since the fraction of
sequences that can be compressed by more than &
bits is less than

only very few symbols can have small code length
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* there is a 1-1 correspondence between probability
distributions and code length functions such that
large code lengths correspond to small
probabilities and vice versa

forallx" € x* : L(x") = —log P(x")
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+ Lis a set of code(length function)s available to
encode data x"

- assume that one of the code(length function)s in L
allows for substantial compression of x”

- TASK: encode x" using minimum number of bits!
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For example: L finite
There exists a code L, such that for some
constant K, for all n, x",all LEL :
L,(x")<sL(x")+K
Specifically
L, (x")sinfic; L(x")+ K

K does not depend on n, while typically L(x") grows
linearly in n

Three Concepts Information ‘05 © Petri Myllymaki, Henry Tirri 2002-2005

+ Let M be aprobabilistic model, i.e., a family (set)
of probability distributions

- Assume M finite: M ={P(:(6)),....P(|6y)}
+ There exists a code Ly s.t. for all n, x", 0:
Ly (x")=-logP(x" |0)+K
« hence, exists distribution Py s.t.
-log Py, (x") < —log P(x" |0) + K
cie. P,(x")=K"(x"10)
Py is a "universal model" (distribution) for M
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+ let W be a prior over M. The Bayesian marginal
likelihood is defined as:

Pruyes " [ M) = 3 P:"10,0(0)
+ This is a universal moézll, since
Foralln,x",0 : —log Pgayes (x" | M) =
—logﬁP(x” [0)W(6;)=
-
—log 3 P(x" |0)-logh (6)

=
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The ML (maximum likelihood) distribution is 6(x")
infp e {_lOgP(X” |6)}

code x" by first codingd(x"), then coding x”"
with the help of 4(x"):

Ly, (" | M) = ~log ¥ (O(x")) - log P(x" | 6(x"))

Bayes' mixture assigns larger probability (shorter
code length) to outcomes....

what prior leads to short code lengths?
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Look for P* such that regret
—logP* (x") - (—logP(x" 10(x" )))

is small no matter what x" are; i.e. look for

inf,. sup\,,EX,,{—logP*(x")—(—logP(x” |é(x">))}

infy. sup .. {~log P*(+") = (log P(x" 16"}

is achieved by Normalized Maximum
Likelihood (NML) distribution
P("6(x"))

Py (" | M) = A
D PO 100™)
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Ll il . ; - n
Select M; minimizing -log Py, (x" | M;) , i.e. Under regularity conditions —log Py, (x" | M) =
4 A A k n
~log P(x" |0;(x")) +1og 3, nc n P(y" |0;(y™)) —log P(x" |6;(x™)) + Slog-—+log [[det(6)d0 +o(1)
error(=minus fit) term complexity term (s logH) error term #parameters “volume" of model
viewed as manifold in
space of all
distributions
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The family of probability distributions forms a Riemannian
manifold (information geometry; Rao, 1945; Efron, 1975;
Amari, 1980).
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The Riemannian volume measure is related to the number of
all possible 'distinguishable’ probability distributions that are
indexed by the model family (Balasubramanian, 1997):

fdeJdalan
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Under regularity conditions -log Py (x" | M) =

—log P(x" |6;(x")) + glog% + logf\/dctl((})dﬁ +o(1)

Under regularity conditions ~ —log Pryes (X" | M) ~

—log P(x" |6;(x")) +§log% —logw(8) +log\/det1(8)d8 + o(1)

If we take Jeffrey's prior

[det 1(0)
w@) =V —
© [JdetI@)d0 ... ®
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+ interpret —logP (x) as loss incurred when
predicting using P while actual outcome was x
+ Bayesian marginal likelihood can be written as
cumulative log-loss prediction error
e Ppaves(x)
—l0g Pggyes (x") = —IOEHLH =
1 PBA{VES(X )

n n

i-1
E —10g Pggyes (i | X102 = E Loss(x;, Pgayes(*|x'7))
1 i=1
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+ what do we do when the data generating
mechanism is not in the family of models M we
consider? (what is prior?)

+ MDL priors are technical in nature

+ Jeffreys' prior is uniform prior on the space of
distributions with the “natural metric" that
measures distances between distributions by how
distinguishable they are
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