























Information = decreased uncertainty

= Example: 4 outcomes a,b,c,d with probabilities p(a),
p(b), p(c) and p(d)

= Sender knows the result, receiver doesn't

= Binary channel (yes/no questions)







Figure 2.1. The binary entropy function Ha(p) = H(p, 1-p) = plog, %'*'(1 —p) log, Tﬁj
as a function of p.
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Figure 1.16. Probability distribution over the 27 outcomes for a randomly selected letier
in an English language document (estimated from The frequently asked questions
manual for Linuz). The picture shows the probabilities by the sizes of white squares.
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Shannon's source coding theorem

Let X be an ensemble with entropy H(X) bits. Given

£>0 and 0< O <1, there exists a positive integer N, S.t.
For N > N,

%Hg(XN)—H(X)«S






AEP and source coding

Asymptotic Equipartition Principle: for N i.i.d. random
variables XN = {X,,.. X\ }, with N sufficiently large, the
outcome x = {Xy,..,Xp} is almost certain to belong to

a subset of AN having only 2NH(X) members all having

probability close to 2-NH(X)




