
How much can we compress? 
- Shannon’s Source Coding 

Theorem



On Probability and Entropy
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Probability 
� An ensemble X is a random variable x 
with a set of possible outcomes Ax withprobabilities Px

� Probability of a subset T of Ax 
∑
∈

==
Ta

i
i

axPTP )()(

� A joint ensemble XY is an ensemble for 
which the outcomes are ordered pairs 
x,y where x ∈ Ax and y ∈ Ay
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Probability continued
� Marginal probability (from the joint probability P(x,y)) 

∑
∈

=
XAx

yxPyP ),()(

� Conditional probability
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Probability continued
� Product rule

)|(),|()|,( HyPHyxPHyxP =

� Sum rule
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Bayes’s theorem

∑=

=
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HyPHyxP

HyPHyxP

HxP

HyPHyxP
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Bayesian view of probability!
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Information content  
� First attempt: number of possible outcomes |Ax|

�not additive: for xy we have |Ax||Ay|
� Perfect information content

�additive, but no probabilistic element
||log)( 20 XAXH =
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Shannon information
� looking for an information content of 
the event x=ai

h(x = ai) = log2

1
pi



Information = decreased uncertainty
� Example: 4 outcomes a,b,c,d with probabilities p(a), 
p(b), p(c) and p(d)
� Sender knows the result, receiver doesn’t
� Binary channel (yes/no questions)
� A lot of questions � a lot of information
� “code” = sequence of answers to questions

� Is it a or b? Is it a (Is it c)?
� Is it a? Is it b? Is it c? 

� Case 1: P(a) = 1
� Case 2: P(a) = P(b) = P(c) = P(d) = 1/4
� Case 3: P(a)=1/2, P(b)=1/4, P(c)=P(d)=1/8
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Entropy
� The entropy of X is a measure of the 
expected information content or 
“decreased uncertainty” of an event x

�H(X) ≥ 0 (= iff pi=1 for one i)
�H(X) ≤ log (|X|) (= iff pi=1 /|X| for all i)∑

∈
≡

XAx xP
xPXH

)(
1

log)()(
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Binary entropy
∑≡

i i
i p

pXH
1

log)( 2 Information measure?
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Example: letter distribution
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Weighting problem
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Entropy continued
� The joint entropy of X,Y

∑
∈

≡
YX AAxy yxP

yxPYXH
),(

1
log),(),(

� The conditional entropy of X given Y

)|(
1

log),(                

)|(
1

log)|()()|(

yxP
yxP

yxP
yxPyPYXH

YX

Y X

AAxy

Ay Ax

∑

∑ ∑

∈

∈ ∈

=







≡

“A
ve

ra
ge

 u
nc

er
ta

in
ty

 th
at

 r
em

ai
ns

 a
bo

ut
 x

w
he

n 
y 

is
 k

no
w

n”



Three Concepts: Information ‘06 © Petri Myllymäki & Henry Tirri 2002-2006 38

Entropy continued
� Chain rule for entropy
H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
� Mutual information

H(X;Y) ≡ H(X) - H(X|Y)
� Entropy distance

DH(X,Y) ≡ H(X,Y) - H(X;Y)

“Average reduction in 
uncertainty of x  when 
learning the value of y
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Entropy relationships
H(X,Y)

H(X)

H(Y)

H(X|Y) H(X;Y) H(Y|X)
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Kullback-Leibler divergence
� Also known as “relative entropy”

∑=
x

KL xQ

xP
xPQPD

)(
)(

log)()||(

� Not strictly a “distance”
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Idea
� Some symbols have a smaller probability
� gamble that the rare symbols won’t occur
� encode the observations in a smaller code (alphabet) CX
� measure log2|CX|
� the larger the risk, the smaller the alphabet
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Formalize the idea

T

Ax

x
x

δ<∉ )( TxP

Essential information

{ }δδ −≥∈⊆= 1)(,|:|minlog)( 2 TxPATTXH X

Smallest T s.t.
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Block coding
� assume that x = {x1,x2,…,xN} i.i.d.
� independent variables, thus 

H(XN) = NH(X)
� Hδ(XN) depends on the value of δ, so 
where is the theory?

� N grows, Hδ(XN) becomes almost 
independent of δ!
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Shannon’s source coding theorem
Let X be an ensemble with entropy H(X) bits. Given

ε>0 and 0< δ <1, there exists a positive integer N0 s.t.
For N > N0,

εδ <− )()(
1

XHXH
N

N
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Typical set
� for long strings

� the information content of a typical string is

� the typical set 

)()(
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21)()()()( Np
j

NpNp
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jpppxPxPxPp ⋅⋅⋅≅⋅⋅⋅=x
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log 2x

TNβ ≡ x ∈ AX
N :

1

N
log2

1

P(x)
− H(x) < β

   

   
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AEP and source coding
Asymptotic Equipartition Principle: for N i.i.d. random
variables XN = {X1,…,XN}, with N sufficiently large, theoutcome x = {x1,…,xN} is almost certain to belong toa subset of AxN having only 2NH(X) members all having 
probability close to 2-NH(X)


