
The Revenge of a Student -
Symbol Codes
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Symbol codes

 Notation: {0,1}+={0,1,00,01,10,11,000,…}
 A symbol code C is a mapping from Ax to

{0,1}+

Ax

ai c(ai)
C

c+(x1x2x3...xN) = c(x1)c(x2)c(x3)... c(xN)

l(x) = |x|
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Decoding of symbol codes

 A code C(X) is uniquely decodable if
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 A code C(X) is a prefix code if no
codeword is a prefix of any other
codeword

 The expected length L(C,X) of a symbol
code C for ensemble X is
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Example
Ax = {1,2,3,4}, PX = {1/2,1/4,1/8,1/8}

C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111

The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits
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Kraft inequality
 Given a list of integer {li}, does there exist a

uniquely decodable code with {li}?
 “Market model”: total budget 1; cost per

codeword of length l is 2-l.

Kraft inequality: For any uniquely decodeable code C
over the binary alphabet {0,1}, the codeword lengths
must satisfy:

Conversely, given a set of codeword lengths that
satisfythis inequality, there exists a uniquely
decodable prefix code with these codelengths.
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Limits of unique decodeability
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What can we hope for?
Lower bound on expected length: The expected length
L(C,X) of a uniquely decodable code is bounded below by
H(X).

Compression limit of symbol codes: For an ensemble
X there exists a prefix code

H(X) ≤ L(C,X) < H(X) + 1.
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“Proof-map” of the lower bound
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Define qi " 2
# li /z,  where z = 2

# li '
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Proof of Gibbs’ inequality

 Jensen’s inequality: f(E(x)) ≤ E(f(x))

 Alternative proofs: see e.g. Wikipedia
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(What happens if we use the
“wrong” code?)

Assume the “true probability distribution” is {pi}. If we 
use a complete code with lengths li, they define a
probabilistic model qi = 2-li. The average length is

ii
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i qppXHXCL /log)(),( !+=

Kullback-Leibler divergence DKL(p||q)

NB: The expected code length reaches the minimum
H(X) when li = log (1/pi)
(in other words: when p=q and K-L divergence is zero)
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Optimal symbol code: Huffman
coding

 Take two least probable symbols in the
alphabet as defined by {pi}.

 Combine these symbols into a single
symbol, pnew = p1 + p2. Repeat (until one
symbol)
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Huffman in practice

1 2 3 4 5

0.25 0.25 0.2 0.15 0.15

0.25 0.25 0.2 0.3
0 1

0.25 0.45 0.31
0

0.55 0.45 1
0

1.0 1
0 3 ~ 11
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Huffman for the Linux manual

L(C,X) = 4.15 bits

H(X) = 4.11 bits
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Why is this not the end of the
story?

 Adaptation: what if the ensemble X
changes? (as it does…)
calculate probabilities in one pass
communicate code + the Huffman-coded

message
 “The extra bit”: what if H(X) ~1 bit?

Group symbols to blocks and design a
“Huffman block code”



IEEE Information Society Golden
Award: Stream codes
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The guessing game

THERE-IS-NO-GROUP-LIKE-COSCO-GROUP

211511211311112111111321111111121111

The number of guesses before the
character was identified

“A new
alphabet”

211511211311112111111321111111121111

Encode: use the number of guesses

Decode: let the twin guess and stop
after the communicated number of
guesses
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History of arithmetic coding

 Does not require that the symbols translate into
integral number of bits

 Shannon 1948 discussed binary fractions
 First code of this type discovered by Elias
 1976 Pasco and Rissanen (independently)
 Rissanen & Langdon 1979 described hardware

implementation
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An example fixed model

Symbol Probability Range

a 0.2 [0,0.2)

e 0.3 [0.2,0.5)

i 0.1 [0.5,0.6)

o 0.2 [0.6,0.8)

u 0.1 [0.8,0.9)

! 0.1 [0.9,1.0)
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The idea
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Arithmetic coding
 with every new symbol produced by the source, the

probabilistic model provides a predictive distribution
over all possible values of the next symbol

 encoder uses the model predictions to create a
binary string

 dynamic model (chain rule):
    P(e,a,i,i,!)=P(e)P(a|e)P(i|e,a)P(i|e,a,i)P(!|e,a,i,i)
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Basics
 Source alphabet Ax = {a1,…,aI}
 Source stream x1,x2,...
 Model M:

),,|( 11 != nin xxaxP K

 A binary transmission is viewed defining
an interval within the real line from 0 to
1

01101 [0.01101,0.01110)
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Basics continued
 [0,1) can be divided into I intervals

according to P(x1=ai)
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 Repeat the same procedure with
interval ai to get ai a1,…, ai aI so that the
length of ai aj is proportional to

)|( 12 ij axaxP ==
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Encoding example
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Decoding example
10011101

Decoder

?

Calculate the initial P(a), P(b) and P(!) [duplicate the encoder!]
and deduce the intervals “a”, “b” and “!”

10 Deduce that the first symbol was “b”

Calculate P(a|b), P(b|b) and P(!|b) and deduce the intervals
“ba”, “bb” and “b!”

1001 Deduce that the second symbol was “b” Etc.
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Lempel-Ziv coding
 simple to implement, asymptotic rate approaches the

entropy
 widely used (gzip, compress,...)
 basic idea: replace a substring with a pointer to an

earlier occurrence of the substring
 Example:

 String: 1011010100010...
 Substrings: 1, 0, 11, 01, 010, 00, 10,...
 Replace 010  with a pointer to “01” + “0”
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Various codes: the big picture
 fixed length block codes: mappings from a

fixed number of course symbols to a fixed
length binary message

 symbol codes
 variable length code for each symbol in the

alphabet
code lengths integers
Huffmann code (expectation) optimal
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…big picture continued
 stream codes

 not constrained to emit at least one bit for every symbol in
the source stream

 arithmetic codes use a probabilistic model that identifies
each string with a sub-interval of [0,1). “Good compression
requires intelligence”

 Lempel-Ziv codes memorize strings that have already
occurred. “No prior assumptions on the world”


