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On Minimum Description Length
Modeling
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On Modeling

M-closed

M

Do you believe that the data generating mechanism
really is in your model class M?

M-open
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“non-M-closed” predictive inference

• Explicitly include prediction (and intervention) in
modeling

Models are a means (a language) to describe interesting
properties of the phenomenon to be studied, but they are 
not intrinsic to the phenomenon itself.

“All models are false, but some are useful.”
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Minimum Description Length
Principle

• ”MDL” is a method related to modeling, inductive
inference, machine learning…

• Rissanen 1978-; Barron, Rissanen and Yu 1998
• tasks

– Model selection
– Parameter estimation
– Prediction

• “From arithmetic coding to modeling”
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“Model selection”
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Descriptive complexity
• 1000 bit strings

– 000100010001000100010001 …….. 00010001
– 011101001101000010101010 …….. 10101110
– 111001111110100110111111 …….. 01111011

• Solomonoff-Kolmogorov-Chaitin complexity
– “shortest possible encoding with the help of L”
– code based on a universal computer language L
– too strong a description language - uncomputability
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The idea
• a good model M captures regular features

(constraints) of the observed data
• any set of regularities we find reduces our

uncertainty of the data D, and we can use it to
encode the data in a shorter and less redundant
way

• The more we are able to compress a sequence of
data, the more regularity you have detected in the
data and the more you have learned from the data
(to make predictions of future data)
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For example regression

• There is a trade-off between the model
complexity and fit to the data

simple

complex
MDL
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”Types” of MDL

• algorithmic, ”ideal” MDL (Li and Vitányi ’97)
• MML (Wallace ’68, ’87)
• two-part code MDL (Rissanen ’78, ’83)

– Bayesian Information Criterion (BIC, Shwarz
’78)

• universal model based MDL (Rissanen ’96, Barron,
Rissanen, Yu ’98, Grünwald ’02)
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Probability

”sample” space
set of all sequences of n outcomes
set of arbitrary length sequences
set of infinite sequences
probability distribution over
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Code

(countable) data alphabet

A (uniquely decodable) code C is a one-to-one
map from    to

denotes the length in bits needed
to describe
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Analogy

• let  be a probability distribution. Since  

   only very few  X can have large probability
• let C be a code for        . Since the fraction of

sequences  that can be compressed by more than
bits is less than

   only very few symbols can have small code length
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Correspondence

• there is a 1-1 correspondence between probability
distributions and code length functions such that
large code lengths correspond to small
probabilities and vice versa

)(log)(: allfor nnn
xPxLx !=" +#
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Universal codes

• L is a set of code(length function)s available to
encode data

• assume that one of the code(length function)s in L
allows for substantial compression of

• TASK: encode     using minimum number of bits!
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Universal code (more)
• For example: L finite
• There exists a code LL such that for some

constant K, for all n,     , all            :

• Specifically

• K does not depend on n, while typically L(   ) grows
linearly in n
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Universal Models
• Let M be aprobabilistic model, i.e., a family (set) of

probability distributions
• Assume M finite:
• There exists a code      s.t. for all n,    ,    :

  hence, there exists a distribution        s.t.

• i.e. 
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Bayesian mixture as a univeral
model

• let W be a prior over M. The Bayesian marginal
likelihood is defined as:

• This is a universal model, since
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Two-part MDL code as a
universal model

• The ML (maximum likelihood) distribution is

• code      by first coding        , then coding        with
the help of          :

• Bayes’ mixture assigns larger probability (shorter
code length) to outcomes....

• what prior leads to short code lengths?
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Optimal Universal Model
Look for P* such that the regret
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Universal Model for the Binomial Case
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Optimal Universal Model
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MDL Model Selection

Select Mi minimizing                              , i.e.)|(log i
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Geometric Interpretation of MDL

Under regularity conditions =! )|(log MxP
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Space of probability distributions
 The family of probability distributions forms a Riemannian

manifold (information geometry; Rao, 1945; Efron, 1975;
Amari, 1980).
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Count only “distinguishable” distributions

d I! !det ( )"

 The Riemannian volume measure is related to the number of
all possible ‘distinguishable’ probability distributions that are
indexed by the model family (Balasubramanian, 1997):
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Bayes vs. MDL
Under regularity conditions =! )|(log MxP
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Predictive Interpretation

• interpret                  as loss incurred when
predicting using P while actual outcome was x

• Bayesian marginal likelihood can be written as
cumulative log-loss prediction error
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Philosophy

• what do we do when the data generating
mechanism is not in the family of models M we
consider? (what is prior?)

• MDL priors are technical in nature
• Jeffreys’ prior is uniform prior on the space of

distributions with the ”natural metric” that
measures distances between distributions by how
distinguishable they are


