On Minimum Description Length
Modeling
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On Modeling

M-closed

M-open %

Do you believe that the data generating mechanism
really is in your model class M?
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"non-M-closed” predictive inference

- Explicitly include prediction (and intervention) in
modeling

“All models are false, but some are useful.”

Three Concepts Information ‘06 © Petri Myllymaki, Henry Tirri 2002-2006

76



- "MDL" is a method related to modeling, inductive
inference, machine learning...

+ Rissanen 1978-; Barron, Rissanen and Yu 1998
* tasks

- Model selection

- Parameter estimation

- Prediction
* "From arithmetic coding to modeling”
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- 1000 bit strings
- 000100010001000100010001 ........ 00010001
- 011101001101000010101010 ........ 10101110
- 111001111110100110111111 ........ 01111011

+ Solomonoff-Kolmogorov-Chaitin complexity
- "shortest possible encoding with the help of L"
- code based on a universal computer language L
- too strong a description language - uncomputability
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* a good model M captures regular features
(constraints) of the observed data

+ any set of regularities we find reduces our
uncertainty of the data D, and we can use it to
encode the data in a shorter and less redundant
way

+ The more we are able o compress a sequence of
data, the more reqularity you have detected in the
data and the more you have from the data
(to make predictions of future data)
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+ There is a trade-off between the model
complexity and fit to the data

complex

simple
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» algorithmic, “ideal” MDL (Li and Vitanyi '97)
« MML (Wallace '68, '87)
* two-part code MDL (Rissanen 78, '83)

- Bayesian Information Criterion (BIC, Shwarz
'78)

- universal model based MDL (Rissanen '96, Barron,
Rissanen, Yu '98, Griinwald '02)
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X "sample" space

n
X set of all sequences of n outcomes
X" set of arbitrary length sequences
X set of infinite sequences
P probability distribution over x~
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X (countable) data alphabet

A (uniquely decodable) code C is a one-to-one
map from X to {0.1}"

Lc(x) denotes the length in bits needed
to describe X

Three Concepts Information ‘06 © Petri Myllymaki, Henry Tirri 2002-2006

84



» let P be a probability distribution. Since
EXP(x) <1

only very few X can have large probability

- let C be a code for {0,1}".1 Since the fraction of &

sequences that can be compressed by more than
bits is less than

only very few symbols can have small code length
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* there is a 1-1 correspondence between probability
distributions and code length functions such that
large code lengths correspond to small
probabilities and vice versa

forallx" €x™ : L(x") = —log P(x")
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- Lis aset of code(leng'rh function)s available to
encode data x”

+ assume that one of the code(length func’rlon)s in L
allows for subsTan'rlaI compression of x"

. TASK: encode X" using minimum number of bits!
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* For example: L finite

* There exists a code L, such that for some
constant K, for all n, x*,all LEL :

L,(x")=L(x")+K
+ Specifically L, (x")=infjo L(x")+K

» K does not depend on n, while typically L(x") grows
linearly in n
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* Let M be aprobabilistic model, i.e., a family (set) of
probability distributions

- Assume M finite: M =1{P(:|0)),...,P(-|0,,)}
- There exists a code Ly, s.t. for all n, x", 6 :

L, (x")=-logP(x"|6)+K
hence, there exists a distribution fir s.t.
-log Py, (x") = -log P(x" |0) + K
*ie. P (x")=K"“P(x"|0)

Py is a "universal model” (distribution) for M
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* let W be a prior over M. The Bayesian marginal
likelihood is defined as:

PBayes(x |M) EP(X |H )W(H )
- This is a universal modef since

Foralln,x",0 : —log P, (x" | M) =
m
—logEP(x" ERIACHE

j=1
—log P(x" |0)—logW (0)
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+ The ML (maximum likelihood) distribution is 6(x")
inf.co8 {—logP(x" IH)}

- code x" by first codingd(x"), then coding x" with
the help of 6(x") :

Ly, (x" | M) =—logW (0(x")) - log P(x" | 6(x"))

+ Bayes' mixture assigns larger probability (shorter
code length) to outcomes....

» what prior leads to short code lengths?
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Look for P* such that the regret
_log P * (x") — (—logP(x” | é(x")))

iIs small no matter what " are; i.e. look for

int,. SUp ., {—IOgP *(x") = (—log P(x" | é(xn)))}
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Universal Model for the Binomial Case
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int,. SUp ., » {—logP *(x") - (_log P(x" | é(xn)))}

is achieved by Normalized Maximum
Likelihood (NML) distribution

P(x" |6(x"))
S e PO 10G™)

Py (x" | M) =
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Select M; minimizing —log Py (X" | M) . i.e.

—log P(x" | 0;(x")) + log Ey”ex” P(y" 16;(y™))

|

error(=minus fit) term
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Under regularity conditions —log Py, (x" | M) =

—log P(x" |0, (x")) + Elogi + logf\/det 1(6)dO +o(1)
2 27T

Y I |

error term #parameters "volume" of model

viewed as manifold in
space of all
distributions
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The family of probability distributions forms a Riemannian
manifold (information geometry; Rao, 1945; Efron, 1975;
Amari, 1980).
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The Riemannian volume measure is related to the number of
all possible ‘distinguishable probability distributions that are
indexed by the model family (Balasubramanian, 1997).

f d0./det 1(0)
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Under regularity conditions —log Py, (x" | M) =

—log P(x" |0,(x")) + Elogi + logf\/det 1(6)dO + o(1)
u 27T

Under regularity conditions  —log Py, . (x" |[M) =

~log P(x"|0,(x™)) + %10g2£ —logw(0) +log./det 1(6)dO + o(1)
JU

If we take the Jeffreys prior

W(o) = \Jdet1(0)

[Ndet1(0)d6 - ©
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* interpret —log P (x)as loss incurred when
predicting using P while actual outcome was x

» Bayesian marginal likelihood can be written as
cumulative log-loss prediction error

e Phyes(x)
—log PBayeS (x")=-log 1_[ e 1
b Bayes (x )

n n
—1
E_IOgPBayeS(xi | xla-“axi—l) = ELOSS(beBayeS(’ | xl ))
1 1=l
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» what do we do when the data generating
mechanism is not in the family of models M we
consider? (what is prior?)

* MDL priors are technical in nature

+ Jeffreys' prior is uniform prior on the space of
distributions with the "natural metric” that
measures distances between distributions by how
distinguishable they are
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