
Information-Theoreti Modeling, Fall 2009Exerises V, due Friday 16 Otober.1. Consider binary sequenes x15 = (x1, x2, . . . , x15) ∈ {0, 1}15 of length n = 15.Let M = {pθ ; θ ∈ [0, 1]} be a model lass onsisting of i.i.d. Bernoulli distributions| hene, the probability of sequene x15 is given by θ
∑

xi(1 − θ)n−
∑

xi , where∑
xi and n −

∑
xi denote the number of 1's and 0's in x15, respetively.We quantize the parameter spae Θ = [0, 1] by hoosing 11 points at even inter-vals, letting the possible quantized parameters be θq ∈ Θq = {0.0, 0.1, 0.2, . . . , 1.0}.(a) What is the two-part ode-length (ignoring the integer requirement) for datasequene x15 = 001000100000001? Sine we are not using the optimal quan-tization, we need to evaluate the two-part ode-length asmin

θq∈Θq

[log2

1

pθq(D)
+ ℓ(θq)

]

.Use the uniform ode for θq whih implies ℓ(θq) = log2 11 for all θq ∈ Θq.(b) Compute the mixture ode-length,log2

1∑

θq∈Θq

pθq(x15)w(θq)
,with the uniform prior w(θq) = 1

11
for all θq ∈ Θq.Compare these ode-lengths. Optional: Does the order of the ode-lengthsdepend on the atual sequene x15?2. Continuation of the �rst exerise: Compute the normalized maximum likeli-hood ode-length,log2

1

pθ̂(x15)/C
, where C =

∑

y15∈{0,1}15

pθ̂(y15),where the sum is over all the possible 15 bit sequenes. Note that eah term pθ̂(y15)in the sum involves the parameters maximizing the probability of sequene y15. Themaximizing θ for y15 is given by θ̂ =
∑

yi

n
. By these observations, we obtain

pθ̂(y15) =

(∑
yi

n

)

∑
yi

(

1 −

∑
yi

n

)n−
∑

yiOptional: Can you �gure out a way to ompute the sum faster than by enu-merating all the 215 possible binary sequenes?
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3. (2 points) Curve �tting. For this exerise you need to use gnuplot or someother tool that allows you to �t parametri funtions to data. We analyse a sequeneof observations given in the polydata.txt �le, available at the ourse web-page1.First, let's take a look at the data (Fig. 1):
gnuplot> plot "polydata.txt"
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Figure 1: polydata.txtNow, let's �t a linear funtion f(x) = a + bx to the data using gnuplot's fitproedure:
gnuplot> func1(x)=a+b*x

gnuplot> fit func1(x) "polydata.txt" via a,bWe get a long output giving us all sorts of statistis, inluding the \�nal sum ofsquares of residuals: 5978.96". The �tted urve (Fig. 2) an be plotted by:
gnuplot> plot "polydata.txt", func1(x)
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Figure 2: A linear funtion f(x) = a + bx �tted to the data.We an also �t, say, a quadrati funtion, i.e., a seond order polynomial:
gnuplot> func2(x)=a+b*x+c*x*x

gnuplot> fit func2(x) "polydata.txt" via a,b,c1The sequene of values is: 53, 44, 69, 59, 81, 76, 80, 83, 83, 69, 77, 76, 70, 57, 43, 41, 36, 37,30, 28, 29, 12, 7, 19, 8, 18, 20, 19, 13, 16. 2



In this ase the residual sum of squares is 5195.46, whih means that the �t wasbetter. In fat we need not restrit to polynomials: we an �t any funtion that wean write in gnuplot, inluding exponentials, logarithms, trigonometri funtions,et.If we want to enode the data using a this kind of a model, we need to enode1. the oeÆients: we use the asymptoti formula k

2
log2 n as the ode-lengthfor this part,2. the data: we use a Gaussian distribution.In the Gaussian density �tted to the data, the mean is given by the �ttedurve and the variane is given by the residual sum of squares divided by thesample size: σ̂2 = RSS/n. For instane, in the linear ase, the variane is given by

σ̂2 = 5978.96/30 ≈ 199.3.The fat that the Gaussian distribution is de�ned as a density, not a probabilitymass funtion, is atually of no onern | this will be explained on Friday's leture.The ode-length of the seond part beomes thenlog2







n∏

i=1

1√
2πσ̂2

e
−

(f(x) − y)2

2σ̂2







−1

,where f(x) is the �tted funtion. This an be re-written as
n

2
log2(2πσ̂2) +

n∑

i=1

(f(x) − y)2

(2 ln 2)σ̂2
,where the sum of squared residuals and the ML estimate of the variane σ̂2 aneleah other, and the seond term beomes a onstant (see Leture 10). We an thuswrite the ode-length as

n

2
log2 RSS+ onstant,where onstant doesn't depend on the data or the funtion we are �tting, and anbe ignored.The total ode-length whih gives the �nal MDL riterion is therefore

n
2
log2 RSS+ k

2
log2 n,where k is given by the number of oeÆients in the model plus one for the varianeparameter.To give an example, in the ase of the linear model, the value of the riterionis given by 30

2
log2 5978.96 + 3

2
log2 30 ≈ 195.5. For the quadrati funtion, we get

30
2
log2 5195.46+ 4

2
log2 30 ≈ 195.0. The latter is smaller, so we prefer the quadratifuntion.Your task is to �nd a funtion for whih the MDL riterion gives as small avalue as possible.Bonus exerise. Generate your own data from some parametri funtion f(x),and see if that funtion is identi�ed orretly by the MDL riterion. Try di�erentsample sizes. 3


