fNML Criterion for Learning Bayesian Network Structures

Tomi Silander Teemu Roos Petri Kontkanen Petri Myllymaki	
	PGM-08 Hirtshals
	September 17-19 2008

Helsinki Institute for Information Technology HIIT FINLAND

Outline:

Bayesian Networks
Model Selection Scores
New Stuff: fNML Score

+ Data

NAME	GENDER	PROFESSION	CHILDREN	X10 101
Teemu	male	researcher	2	
Clark	male	reporter	0	
Margrethe	female	queen	2	
:	:	:	:	OLU MO

+ Data

NAME	GENDER	PROFESSION	CHILDREN	X10 idl
Teemu	male	researcher	2	
Clark	male	reporter	0	
Margrethe	female	queen	2	
:	:	:	:	

+ Data

NAME	GENDER	PROFESSION	CHILDREN	N-UI	10
Teemu	male	researcher	2	XIU	ic
Clark	male	reporter	0		101
Margrethe	female	queen	2	JUY	10
:	:	:	:	010	01

NAME	GENDER	PROFESSION	CHILDREN	X!Qi č
Teemu	male	researcher	2	
Clark	male	reporter	\circ D_i	
Margrethe	female	queen	2	
:	:	:	:	JIL ing

Model Selection: + Scores

• Bayes (BDe)

• BIC & AIC

• MDL

The state-of-the-art model selection criterion: Bayesian Dirichlet equivalent (BDe) score Assumes Dirichlet prior on model parameters θ . Evaluate marginal likelihood of data given model

$$P(D \mid G, \alpha) = \int P(D \mid G, \theta) P(\theta \mid G, \alpha) \, d\theta.$$

Depends on hyper-parameter α .

+ BIC & AIC

10/30

BIC: Asymptotic approximation of marginal likelihood: $BIC(G, D) = \log \hat{P}(D \mid G) - \frac{k}{2} \log n.$

AIC: Asymptotic approximation of estimated prediction error:

$$AIC(G, D) = \log \hat{P}(D \mid G) - k.$$

+ MDL

11/30

Minimum Description Length (MDL) Principle:

Choose the model that yields the shortest description of the data together with the model.

Too simple modeldata long, model short"Just right"data short, model shortToo complex modeldata short, model long

12/30

Image: 1."Pedestrian"Asymptotic two-part code-length same as BIC.

"Pedestrian" Asymptotic two-part code-length same as BIC.

2. "Sophisticated" Bayesian marginal likelihood.

+ Flavours of MDL

14/30

"Pedestrian" Asymptotic two-part code-length same as BIC.

2. "Sophisticated" Bayesian marginal likelihood.

"Champions League" Modern (minimax regret optimal) code

normalized maximum likelihood (NML)

Problem: NML computationally very hard.

+ Bayes vs. MDL (minimax regret)

The Bayesian decision principle is minimization of expected loss:

 $min_A E_X[loss(A,X)]$

MDL (especially NML) is based on minimization of worst-case regret:

New stuff: fINML Score

• fNML = "factorized NML"

- computation
- consistency

17/30

We propose a new MDL score, factorized NML, which is

- 1. easy to compute,
- 2. decomposable (allowing fast search),
- 3. robust (experimentally).

NAME	GENDER	PROFESSION	CHILDREN	K-Qi č
Teemu	male	researcher	2	
Clark	male	reporter	0	
Margrethe	female	queen	2	
:	:	:	:	019/00

NML: Minimax code applied to whole data as one block

NAME	GENDER	PROFESSION	CHILDREN	X10 18
Teemu	male	researcher	2	
Clark		$oldsymbol{D}$ eporter		
Margrethe				

fNML: minimax code applied column by column

NAME	GENDER	PROFESSION	CHILDREN	X1010
Teemu	male	researcher	2	XIQI ÓI
Clark	male D_2	reporter	0	
Margrethe	female	queen	2	
:	:	:	:	D1 Uhit

	fNML: Conditional minimax code when parent(s) exist.				
NAME	GENDER	PROFESSION	CHILDREN	XIQI	
Teemu	male	researcher	2		
Clark $oldsymbol{D}_{I}$	male	reporter	0		
Margrethe	female	queen	2		
:	:	:	:	DIAN	
gender name children					

fNML: Conditional minimax code when parent(s) exist.

NAME	GENDER	PROFESSION	CHILDREN		
Teemu	male	researcher	2		
Clark	male	report D_3	0		
Margrethe	female	queen	2		
:	:	1	1		
gender name profession children					

fNML: Conditional minimax code when parent(s) exist.

NAME	GENDER	PROFESSION	CHILDREN			
Teemu	male	researcher	2			
Clark	male	reporter	$\circ D_4$			
Margrethe	female	queen	2			
:	:	:				
gender name children						

fNML	Cond	itional	mi	nimax
code	when	parent	(s)	exist.

NAME	GENDER	PROFESSION	CHILDREN	X!Qi di
Teemu	male	researcher	2	
Clark	male	reporter	\circ D_4	
Margrethe	female	queen	2	
:	:	:	:	DIANO
			<u>)</u>	

24/30

Each column is encoded using the minimax code for multinomials.

Using fast NML algorithms, this takes $O(n \log n)$ per column.

(Haughton, 1988): Any penalized likelihood score of the form

$$SCORE(G, D) = \log \hat{P}(D \mid G) - \frac{k}{2} a_n,$$

where a_n satisfies $a_n/n \to 0$ and $a_n \to \infty$, is consistent.

<u>Theorem:</u> fNML behaves asymptotically like BIC, i.e., $a_n = log n$.

Hence, fNML is consistent.

+ Decomposable Scores

Problem: Super-exponential search space.

Solution: <u>Decomposable</u> scores

$$SCORE(G,D) = \sum_{i=1}^{m} S(D_i, D_{Gi})$$

For decomposable scores, <u>exact search</u> (global optimum) can be done for about $m \leq 30$ nodes (Koivisto & Sood, 2004; Silander and Myllymäki, 2006).