The Minimum Message Length Principle for Inductive Inference

Daniel F. Schmidt

Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology
School of Population Health
University of Melbourne

University of Helsinki, August 25, 2009
Motivation
Coding
MML
MML87
Example
We have observed n data points $y^n = (y_1, \ldots, y_n)$ from some unknown, probabilistic source p^*, i.e.

$$y^n \sim p^*$$

where $y^n = (y_1, \ldots, y_n) \in \mathcal{Y}^n$.

We wish to learn about p^* from y^n.

More precisely, we would like to discover the generating source p^*, or at least a good approximation of it, from nothing but y^n.
To approximate p^* we will restrict ourself to a set of potential statistical models.

Informally, a statistical model can be viewed as a conditional probability distribution over the potential dataspace \mathcal{Y}^n

$$p(y^n|\theta), \ \theta \in \Theta$$

where $\theta = (\theta_1, \ldots, \theta_k)$ is a parameter vector that indexes the particular model.

Such models satisfy

$$\int_{y^n \in \mathcal{Y}^n} p(y^n|\theta) dy^n = 1$$

for a fixed θ.
An example would be the univariate normal distribution.

\[p(y^n|\theta) = \left(\frac{1}{2\pi \tau} \right)^\frac{n}{2} \exp \left(-\frac{1}{2\tau} \sum_{i=1}^{n} (y_i - \mu)^2 \right) \]

where
- \(\theta = (\mu, \tau) \) are the parameters
- \(Y^n = \mathbb{R}^n \)
- \(\Theta = \mathbb{R} \times \mathbb{R}_+ \)
This talk follows the slight abuse of terminology used by Chris Wallace in calling a member of Θ a *model*

Also referred to as a *fully specified model*

This is because, in the MML framework, there is no real distinction between *structural parameters* that specify a model class and what are traditional termed the *parameter estimates* or *point estimates*
Content

1 Motivation

2 Coding

3 MML

4 MML87

5 Example
MML is based on information theory and coding
Consider a countable set of symbols \mathcal{X} (an alphabet)
Wish to label them by strings of binary digits
⇒ Labelling must be *decodable*
For example, $\mathcal{X} = \{A, C, G, T\}$
- Possible coding, $A = 00$, $C = 01$, $G = 10$, $T = 11$
- or $A = 1$, $C = 01$, $G = 001$, $T = 0001$
- and so on ...

Desire this labelling to be optimal, in some sense
Problem central to compression and information transmission
Assume distribution of symbols given by \(p(x), x \in X \)
Let \(l : X \rightarrow \mathbb{R}_+ \) denote the codelength function
⇒ want our code to be short on average, w.r.t. \(p(\cdot) \)
Restrict ourself to decodable codes ; the solution of

\[
\arg \min_l \left\{ \sum_{x \in X} p(x) l(x) \right\}
\]

is

\[- \log_2 p(x)\]

High probability ⇒ short codeword
Low probability ⇒ long codeword

We use natural log, \(\log \); base \(e \) digits (nits, or nats)
Content

1. Motivation
2. Coding
3. MML
4. MML87
5. Example
Minimum Message Length

- Developed primarily by Chris Wallace with collaborators since 1968
- Connects the notion of compression with statistical inference and model selection
- We frame the problem as one of transmitting the data efficiently from a transmitter to a receiver
 - First, a model from the parameter space Θ is named by the transmitter (the assertion)
 - Then the data y^n is transmitted to the receiver using this model (the detail)
- For example, in the normal case, the transmitter would name particular values of (μ, τ) that can then be used to transmit the data y^n
Transmitter and receiver must agree on a common language.

In MML, this is a prior $\pi(\cdot)$ over Θ.

\Rightarrow MML is a Bayesian approach.

The ingredients we need are:

- A model class/family, i.e. linear regression models or neural networks, etc. parameterised by the vector $\theta \in \Theta$.
- A prior probability distribution $\pi(\cdot)$ over Θ.

The receiver only has knowledge of these two things.

But Θ is uncountable ...
Choose a countable subset $\Theta_* \subset \Theta$

⇒ Discretisation of the parameter space

May now devise a code for members of Θ_* using $\pi(\cdot)$
Choose a countable subset $\Theta_* \subset \Theta$

\Rightarrow Discretisation of the parameter space

May now devise a code for members of Θ_* using $\pi(\cdot)$

The transmitter communicates the data to the receiver using a two-part message

- The first part, or assertion, has length $I(\theta)$ and names one model θ from Θ_*.
Two-part Messages, Part 1

- Choose a countable subset $\Theta_* \subset \Theta$
 - Discretisation of the parameter space
- May now devise a code for members of Θ_* using $\pi(\cdot)$
- The transmitter communicates the data to the receiver using a two-part message
 - The first part, or assertion, has length $I(\theta)$ and names one model θ from Θ_*
 - The second part, or detail, has length $I(y^n|\theta)$, and sends the data y^n using the named model θ
Two-part Messages, Part 1

- Choose a countable subset $\Theta_* \subset \Theta$
 \implies Discretisation of the parameter space
- May now devise a code for members of Θ_* using $\pi(\cdot)$
- The transmitter communicates the data to the receiver using a two-part message
 - The first part, or assertion, has length $I(\theta)$ and names one model θ from Θ_*
 - The second part, or detail, has length $I(y^n|\theta)$, and sends the data y^n using the named model θ
This has total (joint) codelength of

\[I(y^n, \theta) = I(\theta) + I(y^n|\theta) \]

- \(I(\theta) \) measures the ‘complexity’ of the model
- \(I(y^n|\theta) \) measures the fit of the model to the data
 ⇒ So \(I(y^n, \theta) \) trades off model fit against model capability
- Both complexity and fit measured in same units
The Minimum Message Length Principle

To perform estimation one minimises the joint codelength

$$\hat{\theta}_{\text{MML}}(y^n) = \arg \min_{\theta \in \Theta_*} \{ I(\theta) + I(y^n|\theta) \}$$

- The parameter space Θ can be enlarged to include models of different structure and thus can be used to perform model selection.
The MML estimates $\hat{\theta}_{\text{MML}}(y^n)$ are invariant under one-to-one re-parameterisations of the parameter space Θ.
Properties

- The MML estimates $\hat{\theta}_{\text{MML}}(y^n)$ are invariant under one-to-one re-parameterisations of the parameter space Θ.
- Unifies the problem of parameter estimation and model selection.
Properties

- The MML estimates $\hat{\theta}_{\text{MML}}(y^n)$ are invariant under one-to-one re-parameterisations of the parameter space Θ.
- Unifies the problem of parameter estimation and model selection.
- The MML principle always works with fully specified models, that is, by quantising the parameter space we may attach probability masses to parameter estimates.
Properties

- The MML estimates $\hat{\theta}_{\text{MML}}(y^n)$ are invariant under one-to-one re-parameterisations of the parameter space Θ
- Unifies the problem of parameter estimation and model selection
- The MML principle always works with *fully specified models*, that is, by quantising the parameter space we may attach probability masses to parameter estimates
- May use joint message length $I(y^n, \theta)$ to assess θ even if it is not $\hat{\theta}_{\text{MML}}(y^n)$
Properties

- The MML estimates \(\hat{\theta}_{MML}(y^n) \) are invariant under one-to-one re-parameterisations of the parameter space \(\Theta \).
- Unifies the problem of parameter estimation and model selection.
- The MML principle always works with *fully specified models*, that is, by quantising the parameter space we may attach probability masses to parameter estimates.
- May use joint message length \(I(y^n, \theta) \) to assess \(\theta \) even if it is not \(\hat{\theta}_{MML}(y^n) \).
- Difference in message lengths between two models is approximate negative log-posterior odds.
Constructing the Codes

- The Strict Minimum Message Length (SMML) (Wallace & Boulton, 1975) approach constructs a complete two-part codebook designed to minimise expected codeword length given our priors.
- Unfortunately, it is NP-hard and infeasible for all but simplest of problems.
- Fortunately, we are not interested in the codes as much as their lengths.
 - Under certain assumptions, we can approximate these to a high degree.
Choosing \(\Theta^* \) amounts to partitioning of \(\Theta \)

Idea: rather than construct code for all models in \(\Theta^* \), restrict to constructing code only for the model of interest

Let \(\Omega_\theta \) be a neighbourhood of \(\Theta \) near model \(\theta \) of interest

\(\Rightarrow \) Quantisation cell

Make several assumptions

1. The prior density \(\pi(\cdot) \) is slowly varying in \(\Omega_\theta \)
2. The negative log-likelihood function is approximately quadratic in \(\Omega_\theta \)
3. The Fisher information \(|J(\theta)| > 0 \) for all \(\theta \in \Theta \), where
Wallace-Freeman Approximation (MML87), (2)

- Derivation when $\theta \in \Theta \subset \mathbb{R}$
 - $\Omega_\theta = \left\{ \theta \in \Theta : |\theta - \hat{\theta}| \leq w/2 \right\}$ is a symmetric interval of width w centred on θ

- The code-length for the assertion

$$I_{87}(\theta) = -\log \int_{\Omega_\theta} \pi(\theta) d\theta \approx -\log w \pi(\theta)$$

- Assertion length is inversely proportional to prior mass (volume of Ω_θ)
 - \Rightarrow The smaller w, the longer $I_{87}(\theta)$
Wallace-Freeman Approximation (MML87), (3)

- If the named model θ was stated \textit{exactly}, i.e. $w = 0$, then the detail would be

$$I(y^n|\theta) = -\log p(y^n|\theta)$$

- As $w > 0$, there is an increase in detail length due to imprecisely stating θ

- By Taylor series expansion, code length for the detail

$$-\frac{1}{\int_{\Omega_\theta} \pi(\theta) d\theta} \int_{\Omega_\theta} \pi(\theta) \log p(y^n|\theta) d\theta \approx -\log p(y^n|\theta) + \frac{1}{w} \int_{\Omega_\theta} \tilde{\theta}^2 J(\theta) d\tilde{\theta}$$

where

$$J(\theta) = -\mathbb{E} \left[\frac{d^2 \log p(y^n|\bar{\theta})}{d\bar{\theta}^2} \right]_{\bar{\theta} = \theta}$$
Wallace-Freeman Approximation (MML87), (4)

- Total codelength of the message

\[I_{87}(y^n, \theta) = -\log w \pi(\theta) - \log p(y^n|\theta) + \frac{w^2 J(\theta)}{24} \]

- Minimising w.r.t. \(w \) yields

\[\hat{w} = \left(\frac{12}{J(\theta)} \right)^{1/2} \]

- MML87 codelength for data and model

\[I_{87}(y^n, \theta) = -\log \pi(\theta) + \frac{1}{2} \log J(\theta) - \frac{1}{2} \log 12 + \frac{1}{2} - \log p(y^n|\theta) \]

Assertion

Detail
Wallace-Freeman Approximation (MML87), (5)

- In multiple dimensions, MML87 codelength for data and model

\[I_{87}(y^n, \theta) = - \log \pi(\theta) + \frac{1}{2} \log |J(\theta)| + \frac{1}{2} \log \kappa_k + \frac{p}{2} - \log p(y^n | \theta) \]

Assertion

where \(\kappa_k \) is the normalised mean-squared quantisation error per parameter of an optimal quantising lattice in \(k \)-dimensions and

\[J(\theta) = -E \left[\frac{\partial \log p(y^n | \bar{\theta})}{\partial \bar{\theta} \partial \bar{\theta}'} \bigg|_{\bar{\theta}=\theta} \right] \]

Detail

- Useful approximation

\[\frac{1}{2} (1 + \log \kappa_k) \approx -\frac{k}{2} \log 2\pi + \frac{1}{2} \log k\pi + \psi(1) \]
Wallace-Freeman Approximation (MML87), (6)

- Assertion length $I_{87}(\theta)$ proportional to $|J(\theta)|$
 ⇒ Models with higher Fisher information ‘more complex’

- To perform inference, solve

$$\hat{\theta}_{87}(y^n) = \arg \min_{\theta} \{I_{87}(y^n, \theta)\}$$

- Assigns a probability mass to all models $\theta \in \Theta$
- Valid even if Θ includes models from different model classes (i.e. model selection)

Daniel F. Schmidt
Minimum Message Length
Wallace-Freeman Approximation (MML87), (7)

- For suitable model classes, $J(\theta) = nJ_1(\theta)$
 - $J_1(\cdot)$ the per sample Fisher information
- Large sample behaviour, $n \to \infty$ as k held constant

$$I_{87}(y^n, \theta) = - \log p(y^n | \theta) + \frac{k}{2} \log n + O(1)$$

\Rightarrow MML87 is asymptotically BIC

- The $O(1)$ term depends on $J_1(\cdot)$, $\pi(\cdot)$ and k
- MML87 estimator sequence converges to Maximum Likelihood estimator sequence (under suitable regularity conditions)

- If k grows with n, behaviour is very different!
 \Rightarrow MML estimators often consistent even when ML is not
Wallace-Freeman Approximation (MML87), (7)

Theorem

The MML87 estimator is invariant under differentiable, one-to-one reparameterisations of the likelihood function.

Proof: note that the Fisher information transforms as the square of a density.

This property not shared by common Bayes estimators such as posterior mode or posterior mean.
<table>
<thead>
<tr>
<th></th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Coding</td>
</tr>
<tr>
<td>3</td>
<td>MML</td>
</tr>
<tr>
<td>4</td>
<td>MML87</td>
</tr>
<tr>
<td>5</td>
<td>Example</td>
</tr>
</tbody>
</table>
Binomial Distribution (1)

- Consider experiment with probability θ_\ast of yielding a one and probability $(1 - \theta_\ast)$ of yielding a zero.
- Observe n realisations of this experiment, y^n, and wish to estimate θ_\ast.
- Negative log likelihood (up to constants)

\[-\log p(y^n|\theta) = -n_1 \log \theta - (n - n_1) \log(1 - \theta)\]

with $n_1 = \sum_{i=1}^{n} y_i$ the number of ones.
- Maximum Likelihood estimate of θ_\ast

$$\hat{\theta}_{ML}(y^n) = \frac{n_1}{n}$$
Choose a uniform prior, $\pi(\theta) \propto 1$

Fisher information

$$J(\theta) = \frac{n}{\theta(1 - \theta)}$$

$\Rightarrow J(\theta) \to \infty$ as $\theta \to 0$ and $\theta \to 1$

MML87 estimator

$$\hat{\theta}_{87}(y^n) = \frac{n_1 + 1/2}{n + 1}$$

‘Regularises’ the ML estimator towards the maximum entropy model ($\theta = 1/2$)

MML87 estimator possesses finite Kullback-Leibler risk, ML estimator does not

\Rightarrow consider case when $n_1 = 0$ or $n_1 = n$
Closer θ is to boundary, more accurately it must be stated
\[\Rightarrow \text{Models within same class can be different complexity} \]
Applications/Extensions/Approximations

- Of course, many more applications ...
 - Linear regression models
 - Decision trees/graphs
 - Mixture modelling
 - ARMA models
 - Neural Networks
 - Causal Networks
 - etc...

- Extension of MML87 to hierarchical Bayes models (Makalic & Schmidt, 2009)

- And other approximations when MML87 does not work ...
 - Adaptive coding (Wallace & Boulton 1969)
 - MMLD (Dowe, 1999)
 - MMC_{em} (Makalic, 2007)
 - MML08 (Schmidt, 2008)
References – Theory

References – Applications

- Schmidt, D. & Makalic, E. MML Invariant Linear Regression. *submitted to 22nd Australasian Joint Conference on Artificial Intelligence*, 2009