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"Design with the help
of binary code (0 and
1) the most efficient
method to represent
characters, figures
and symbols."

(Assignment at Prof. R.M.
Fano’s 1952 MIT Information
Theory course.)
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So what have we learned?

For decodable symbols codes:

1 E [`(X )]− H(X ) = D(p ‖ q) + log2
1
c , where q(x) =

2−`(x)

c
.

2 E [`(X )] ≥ H(X ).

3 If `(x) = log2
1

p(x) , then E [`(X )] = H(X ). Optimal!

Note also that for a sequence X1, . . . ,Xn the expected codelength
becomes

E [`(X1, . . . ,Xn)] = E

[
n∑

i=1

`(Xi )

]

=
n∑

i=1

E [`(Xi )] = nH(X ) .

! By Shannon’s Noiseless Channel Coding Theorem, this is
optimal among all codes, not only symbol codes.

Fine print: only if Xi i.i.d.!
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Codelengths and Probabilities

The only problem with the `(x) = log2
1

p(x) codeword choice is the

requirement that codeword lengths must be integers (try to think
about a codeword with length 0.123, for instance), while the so
obtained ` is not in general an integer.

The simplest solution is to round upwards:

Shannon’s Code

Given a pmf, the Shannon code has the codeword lengths

`(x) =

⌈
log2

1

p(x)

⌉
for all x ∈ X .
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Shannon’s code: Example

X p(X ) log2
1

p(X )
`(X )

a 0.0644 3.9 4
b 0.0108 6.5 7
c 0.0178 5.8 6
d 0.0359 4.7 5
e 0.0991 3.3 4
f 0.0147 6.0 7
g 0.0184 5.7 6
h 0.0535 4.2 5
i 0.0551 4.1 5
j 0.0011 9.8 10
k 0.0083 6.8 7
l 0.0343 4.8 5

...
y 0.0165 5.9 6
z 0.0005 10.7 11

0.2111 2.2 3

H(X ) = 4.03

Shannon (1948):

1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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Shannon’s code: Example

0

1

00

01

10

11

000

001

010

011

100

101

110

111

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

T
o

ta
l 
b

u
d

g
e

t
0010

0011

Codeword lengths (3, 4, 4, 4, 5, 5, 5, 5, . . . , 10, 10, 11)
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Shannon’s code: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 3 000

e 0.0991 3.3 4 0010

t 0.0781 3.6 4 0011

a 0.0644 3.9 4 0100

o 0.0598 4.0 5 01010

i 0.0551 4.1 5 01011

h 0.0535 4.2 5 01100

n 0.0516 4.2 5 01101

s 0.0475 4.3 5 01110

r 0.0401 4.6 5 01111

d 0.0359 4.7 5 10000

l 0.0343 4.8 5 10001
...

x 0.0011 9.8 10 1010111101

j 0.0011 9.8 10 1010111110

z 0.0005 10.7 11 10101111110

H(X ) = 4.03

E [`(X )] = 4.60

E [`(X )]− H(X ) = 0.57
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Shannon’s code

The expected codeword length of Shannon’s code is

E [`(X )] = E

[⌈
log2

1

p(X )

⌉]
< E

[
log2

1

p(X )
+ 1

]
= H(X ) + 1 .

In the Alice example we had

E [`(X )]− H(X ) = 4.60− 4.03 = 0.57 < 1 .
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Fano: Example

X p(X ) log2
1

p(X )

a 0.0644 3.9
b 0.0108 6.5
c 0.0178 5.8
d 0.0359 4.7
e 0.0991 3.3
f 0.0147 6.0
g 0.0184 5.7
h 0.0535 4.2
i 0.0551 4.1
j 0.0011 9.8
k 0.0083 6.8
l 0.0343 4.8

...
y 0.0165 5.9
z 0.0005 10.7

0.2111 2.2

(Shannon-)Fano code:

1 Sort by probability.

2 Divide in two equally
probable parts (as equal
as possible)

3 Add ‘0’ to the codewords
in the first part, ‘1’ to the
others.

4 Repeat recursively for
both parts.
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4 Repeat recursively for
both parts.
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X p(X ) log2
1

p(X )

0.2111 2.2
e 0.0991 3.3
t 0.0781 3.6
a 0.0644 3.9
o 0.0598 4.0
i 0.0551 4.1
h 0.0535 4.2
n 0.0516 4.2
s 0.0475 4.3
r 0.0401 4.6
d 0.0359 4.7
l 0.0343 4.8

...
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z 0.0005 10.7

(Shannon-)Fano code:

1 Sort by probability.
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probable parts (as equal
as possible)

3 Add ‘0’ to the codewords
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others.
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 0

e 0.0991 3.3 4 0

t 0.0781 3.6 4 0

a 0.0644 3.9 4 0

o 0.0598 4.0 4 0

i 0.0551 4.1 4 1

h 0.0535 4.2 4 1

n 0.0516 4.2 4 1

s 0.0475 4.3 5 1

r 0.0401 4.6 5 1

d 0.0359 4.7 5 1

l 0.0343 4.8 5 1
...

x 0.0011 9.8 10 1

j 0.0011 9.8 10 1

z 0.0005 10.7 10 1
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 01

t 0.0781 3.6 4 01

a 0.0644 3.9 4 01

o 0.0598 4.0 4 01

i 0.0551 4.1 4 10

h 0.0535 4.2 4 10

n 0.0516 4.2 4 10

s 0.0475 4.3 5 10

r 0.0401 4.6 5 10

d 0.0359 4.7 5 11

l 0.0343 4.8 5 11
...

x 0.0011 9.8 10 11

j 0.0011 9.8 10 11

z 0.0005 10.7 10 11
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 010

t 0.0781 3.6 4 010

a 0.0644 3.9 4 011

o 0.0598 4.0 4 011

i 0.0551 4.1 4 100

h 0.0535 4.2 4 100

n 0.0516 4.2 4 101

s 0.0475 4.3 5 101

r 0.0401 4.6 5 101

d 0.0359 4.7 5 110

l 0.0343 4.8 5 110
...

x 0.0011 9.8 10 111

j 0.0011 9.8 10 111

z 0.0005 10.7 10 111
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 0100

t 0.0781 3.6 4 0101

a 0.0644 3.9 4 0110

o 0.0598 4.0 4 0111

i 0.0551 4.1 4 1000

h 0.0535 4.2 4 1001

n 0.0516 4.2 4 1010

s 0.0475 4.3 5 1011

r 0.0401 4.6 5 1011

d 0.0359 4.7 5 1100

l 0.0343 4.8 5 1100
...

x 0.0011 9.8 10 1111

j 0.0011 9.8 10 1111

z 0.0005 10.7 10 1111
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 0100

t 0.0781 3.6 4 0101

a 0.0644 3.9 4 0110

o 0.0598 4.0 4 0111

i 0.0551 4.1 4 1000

h 0.0535 4.2 4 1001

n 0.0516 4.2 4 1010

s 0.0475 4.3 5 10110

r 0.0401 4.6 5 10111

d 0.0359 4.7 5 11000

l 0.0343 4.8 5 11001
...

x 0.0011 9.8 10 11111

j 0.0011 9.8 10 11111

z 0.0005 10.7 10 11111
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 0100

t 0.0781 3.6 4 0101

a 0.0644 3.9 4 0110

o 0.0598 4.0 4 0111

i 0.0551 4.1 4 1000

h 0.0535 4.2 4 1001

n 0.0516 4.2 4 1010

s 0.0475 4.3 5 10110

r 0.0401 4.6 5 10111

d 0.0359 4.7 5 11000

l 0.0343 4.8 5 11001
...

x 0.0011 9.8 10 111111

j 0.0011 9.8 10 111111

z 0.0005 10.7 10 111111
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Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 2 00

e 0.0991 3.3 4 0100

t 0.0781 3.6 4 0101

a 0.0644 3.9 4 0110

o 0.0598 4.0 4 0111

i 0.0551 4.1 4 1000

h 0.0535 4.2 4 1001

n 0.0516 4.2 4 1010

s 0.0475 4.3 5 10110

r 0.0401 4.6 5 10111

d 0.0359 4.7 5 11000

l 0.0343 4.8 5 11001
...

x 0.0011 9.8 10 1111111101

j 0.0011 9.8 10 1111111110

z 0.0005 10.7 10 1111111111

H(X ) = 4.03

E [`(X )] = 4.07

E [`(X )]− H(X ) = 0.04
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s 0.0475 4.3 5 10110

r 0.0401 4.6 5 10111

d 0.0359 4.7 5 11000

l 0.0343 4.8 5 11001
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x 0.0011 9.8 10 1111111101
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H(X ) = 4.03
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Shannon-Fano Code

The expected codeword length of the Shannon-Fano code is

E [`(X )] ≤ H(X ) + 1 . [corrected on Oct 6, 2009]

In the Alice example we had

E [`(X )]− H(X ) = 4.06− 4.03 = 0.04 ≤ 1 .

Is this optimal? Not necessarily — Huffman!
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Shannon-Fano Code

The expected codeword length of the Shannon-Fano code is
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Huffman Code

So the Shannon-Fano code is not the optimal symbol code. This is
where Professor Fano and a student called David Huffman enter:

"Design with the help of binary code (0 and 1) the
most efficient method to represent characters,
figures and symbols."
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Huffman Code

So the Shannon-Fano code is not the optimal symbol code. This is
where Professor Fano and a student called David Huffman enter:

"Design with the help of binary code (0 and 1) the
most efficient method to represent characters,
figures and symbols."
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David Huffman (1925–1999)
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Huffman Code: Algorithm

Huffman’s algorithm proceeds as follows:

1 Sort all symbols by their probabilities pi .

2 Join the two least probable symbols, i and j , and remove
them from the list. Add a new pseudosymbol whose
probability is pi + pj .

3 If there is more than one symbol left, go to Step 1.

4 Use the resulting binary tree to define the codewords.

See the demo at
www.cs.auckland.ac.nz/software/AlgAnim/huffman.html

Teemu Roos Information-Theoretic Modeling
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Huffman Code: Optimality

The reason why the Huffman code is the optimal symbol code
(shortest expected codelength) is roughly as follows:

It can be shown that there is an optimal code (not necessarily
unique) such that

1 If p(x) > p(y), then `(x) ≤ `(y).

2 The longest two codewords have the same length.

3 The longest two codewords differ only at the last bit and
correspond to the two least probable symbols.

Points 2 & 3 suggest the first step of Huffman’s algorithm. Any
subtree must satisfy the same conditions ⇒ Induction.

Note that since Shannon-Fano gives E [`(X )] ≤ H(X ) + 1, and
Huffman is optimal, Huffman must satisfy the same bound.
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Problems with Symbol Codes

Now we have found the optimal symbols code with expected
codelength E [`(X )] ≤ H(X ) + 1. Are we done?

No. (At least) three problems remain:

1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

2 Shannon-Fano and Huffman codes require that the
distribution generating the source symbols is known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

3 Distribution is not i.i.d.: Dependence and changes.
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Two-Part Codes

Solution to problem 2:
2 The Shannon-Fano and Huffman codes require that the

distribution generating the source symbols is known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

Two-Part Codes

Write the distribution (or code) in the beginning of the file.

Usually the overhead is minor compared to the total file size.
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Block Codes

Solution to problems 1 & 3:
1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

3 Distribution is not i.i.d.: Dependence and changes.

Block Codes

Combine successive symbols into blocks and treat blocks as
symbols. ⇒ One extra bit per block.

Allows modeling of dependence.

Teemu Roos Information-Theoretic Modeling



Outline
Symbol Codes

Beyond Symbols Codes

Problems with Symbol Codes
Two-Part Codes
Block Codes
Arithmetic Coding

Block Codes

Solution to problems 1 & 3:
1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

3 Distribution is not i.i.d.: Dependence and changes.

Block Codes

Combine successive symbols into blocks and treat blocks as
symbols. ⇒ One extra bit per block.

Allows modeling of dependence.

Teemu Roos Information-Theoretic Modeling



Outline
Symbol Codes

Beyond Symbols Codes

Problems with Symbol Codes
Two-Part Codes
Block Codes
Arithmetic Coding

Block Codes

Teemu Roos Information-Theoretic Modeling



Outline
Symbol Codes

Beyond Symbols Codes

Problems with Symbol Codes
Two-Part Codes
Block Codes
Arithmetic Coding

Block Codes

Combining solutions to problems 1–3, we get two-part block
codes: Write first the joint distribution of blocks of N symbols,
and then encode using blocks of length N.

The size of the first part (distribution/code) grows with N, but the
performance of the block code get better.

Complexity Tradeoff

Find suitable balance between complexity of the model (increases
with N) and codelength of data given model (decreases with N).
⇒ MDL/MML Principle
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Adaptive Codes

Alternative Solution to Problems 2 & 3:

Adaptive Codes

For each symbol (or a block of symbols), we can construct a code
based on the probability p(xnew | x1, . . . , xn).

This may lead to computational problems since the code tree has
to be constantly updated.

Adaptive codes also avoid another problem with block codes: the
first symbol can be read only after the whole block is decoded.

Arithmetic coding avoids “all problems”: adaptive, spreads the
one additional bit over the whole sequence, and can be decoded
instantaneously.
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Arithmetic coding

The basic idea is to represent source strings as intervals
[a, b) ⊆ [0, 1).

The end-points, a, b, cannot be encoded with infinite precision.
Fortunately, it is enough to specify any value x ∈ [a, b) within the
interval.

We represent the value x as a sequence of binary digits, e.g.,
x = 0.0110100.

For a wide interval we need a short binary string.

For a narrow interval we need a long binary string.
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Arithmetic coding

We assign wide intervals for probable symbols, and narrow
intervals for improbable symbols.

Arithmetic coding is an example of “stream coding”: each symbol
in the source string is used to divide the interval [a, b) into smaller
sub-intervals.

We continue dividing recursively until the whole source string is
encoded.
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Arithmetic coding

Next Friday:

Universal Coding.

Read the material on arithmetic coding (Witten, Neal &
Cleary)
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