Information-Theoretic Modeling

Lecture 8: Universal Source Coding

Teemu Roos

Department of Computer Science, University of Helsinki

Fall 2009

Lecture 8: Universal Source Coding

Moline Universal Model D, Little Casterton Working Weekend, 2006.

- 1 Universal Source Codes
 - Definitions
 - Universal Models

- Universal Source Codes
 - Definitions
 - Universal Models
- 2 Two-Part Codes
 - Discrete Parameters
 - Continuous Parameters ooh-la-la
 - Asymptotics: $\frac{k}{2} \log n$

- Universal Source Codes
 - Definitions
 - Universal Models
- 2 Two-Part Codes
 - Discrete Parameters
 - Continuous Parameters ooh-la-la
 - Asymptotics: $\frac{k}{2} \log n$
- Advanced Universal Codes
 - Mixture Codes
 - Normalized Maximum Likelihood
 - Universal Prediction

We call a probability distribution $p: \mathcal{D} \to [0,1]$ a **model**.

A **model class** $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ is a set of probability distributions (models).

We call a probability distribution $p : \mathcal{D} \to [0,1]$ a **model**.

A **model class** $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ is a set of probability distributions (models).

The model within \mathcal{M} that achieves the shortest code-length for data x is the **maximum likelihood (ML) model**:

$$\min_{\theta \in \Theta} \log_2 \frac{1}{p_{\theta}(D)} = \log_2 \frac{1}{p_{\hat{\theta}}(D)} \ .$$

We call a probability distribution $p : \mathcal{D} \to [0,1]$ a **model**.

A **model class** $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ is a set of probability distributions (models).

The model within \mathcal{M} that achieves the shortest code-length for data x is the **maximum likelihood (ML) model**:

$$\min_{\theta \in \Theta} \log_2 \frac{1}{p_{\theta}(D)} = \log_2 \frac{1}{p_{\hat{\theta}}(D)} \ .$$

Depends on D!

We call a probability distribution $p : \mathcal{D} \to [0,1]$ a **model**.

A **model class** $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ is a set of probability distributions (models).

The model within \mathcal{M} that achieves the shortest code-length for data x is the **maximum likelihood (ML) model**:

$$\min_{\theta \in \Theta} \log_2 \frac{1}{p_{\theta}(D)} = \log_2 \frac{1}{p_{\hat{\theta}}(D)}$$
 . Depends on $D!$

For model q, the excess code-length or "regret" over the ML model in \mathcal{M} is given by

$$\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} .$$

Universal model

$$\lim_{n \to \infty} \frac{1}{n} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right] = 0 . \tag{1}$$

Universal model

$$\lim_{n\to\infty} \frac{1}{n} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right] = 0 . \tag{1}$$

$$\log_2 \frac{1}{p_{\widehat{\theta}}(D)} \leq \log_2 \frac{1}{p_{\theta}(D)}$$

Universal model

$$\lim_{n \to \infty} \frac{1}{n} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right] = 0 . \tag{1}$$

$$-\log_2 rac{1}{p_{\hat{ heta}}(D)} \geq -\log_2 rac{1}{p_{ heta}(D)}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\widehat{\theta}}(D)} \geq \log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\theta}(D)}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$egin{aligned} E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{\hat{ heta}}(D)}
ight] \ &\geq E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{ heta}(D)}
ight] \end{aligned}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$egin{aligned} E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{\hat{ heta}}(D)}
ight] \ &\geq E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}
ight]-E_{D\sim p_{ heta}}\left[\log_2rac{1}{p_{ heta}(D)}
ight] \end{aligned}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$egin{aligned} E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{\hat{ heta}}(D)}
ight] \ &\geq E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}
ight]-\sum_Dp_{ heta}(D)\log_2rac{1}{p_{ heta}(D)} \end{aligned}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0 \ . \tag{1}$$

$$egin{aligned} E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{\hat{ heta}}(D)}
ight] \ &\geq E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}
ight]-H(p_{ heta}) \end{aligned}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$egin{aligned} E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}-\log_2rac{1}{p_{\hat{ heta}}(D)}
ight] \ &\geq E_{D\sim p_{ heta}}\left[\log_2rac{1}{q(D)}
ight]-n\mathcal{H}(p_{ heta}^{(1)}) \end{aligned}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$\begin{split} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right] \\ & \geq \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] - H(p_{\theta}^{(1)}) \end{split}$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$\lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right]$$

$$\geq \lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] - H(p_{\theta}^{(1)})$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$0 \geq \lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] - H(p_{\theta}^{(1)})$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$\lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] \leq H(p_{\theta}^{(1)})$$

Universal model

$$\lim_{n\to\infty}\frac{1}{n}\left[\log_2\frac{1}{q(D)}-\log_2\frac{1}{p_{\hat{\theta}}(D)}\right]=0. \tag{1}$$

$$\lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] = H(p_{\theta}^{(1)})$$
 (2)

Universal model

A model (code) whose regret grows slower than n is said to be a **universal model** (code) relative to model class \mathcal{M} :

$$\lim_{n \to \infty} \frac{1}{n} \left[\log_2 \frac{1}{q(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} \right] = 0 . \tag{1}$$

$$\lim_{n \to \infty} \frac{1}{n} E_{D \sim p_{\theta}} \left[\log_2 \frac{1}{q(D)} \right] = H(p_{\theta}^{(1)})$$
 (2)

This is another (stochastic) definition of universality, equivalent to $\frac{1}{n}D(p_{\theta}\parallel q)\to 0$ for all $\theta\in\Theta$. It is weaker since $(1)\Rightarrow(2)$.

The typical situation might be as follows:

The typical situation might be as follows:

• We know (think) that the source symbols are generated by a Bernoulli model with parameter $p \in [0, 1]$.

The typical situation might be as follows:

- We know (think) that the source symbols are generated by a Bernoulli model with parameter $p \in [0, 1]$.
- ② However, we do not know p in advance.

The typical situation might be as follows:

- We know (think) that the source symbols are generated by a Bernoulli model with parameter $p \in [0, 1]$.
- ② However, we do not know p in advance.
- **3** We'd like to encode data at rate H(p).

- Universal Source Codes
 - Definitions
 - Universal Models
- 2 Two-Part Codes
 - Discrete Parameters
 - Continuous Parameters ooh-la-la
 - Asymptotics: $\frac{k}{2} \log n$
- Advanced Universal Codes
 - Mixture Codes
 - Normalized Maximum Likelihood
 - Universal Prediction

Let $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ be a parametric probabilistic model class, i.e., a set of distributions p_{θ} indexed by parameter θ .

Let $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ be a parametric probabilistic model class, i.e., a set of distributions p_{θ} indexed by parameter θ .

If the parameter space Θ is discrete, we can construct a (prefix) code $C_1:\Theta\to\{0,1\}^*$ which maps each parameter value to a codeword of length $\ell_1(\theta)$.

Let $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ be a parametric probabilistic model class, i.e., a set of distributions p_{θ} indexed by parameter θ .

If the parameter space Θ is discrete, we can construct a (prefix) code $C_1:\Theta\to\{0,1\}^*$ which maps each parameter value to a codeword of length $\ell_1(\theta)$.

For any distribution p_{θ} , the Shannon code-lengths satisfy

$$\ell_{ heta}(D) = \left\lceil \log_2 rac{1}{p_{ heta}(D)}
ight
ceil pprox \log_2 rac{1}{p_{ heta}(D)} \;\;.$$

Let $\mathcal{M} = \{p_{\theta} : \theta \in \Theta\}$ be a parametric probabilistic model class, i.e., a set of distributions p_{θ} indexed by parameter θ .

If the parameter space Θ is discrete, we can construct a (prefix) code $\mathcal{C}_1:\Theta\to\{0,1\}^*$ which maps each parameter value to a codeword of length $\ell_1(\theta)$.

For any distribution p_{θ} , the Shannon code-lengths satisfy

$$\ell_{ heta}(D) = \left\lceil \log_2 rac{1}{p_{ heta}(D)}
ight
ceil pprox \log_2 rac{1}{p_{ heta}(D)} \; .$$

Using parameter value θ , the total code-length becomes (\approx)

$$\ell_1(\theta) + \log_2 \frac{1}{p_{\theta}(D)}$$
.

Using the maximum likelihood parameter, the total code-length becomes

$$\ell_{\mathsf{two-part}}(D) = \ell_1(\hat{ heta}) + \log_2 rac{1}{p_{\hat{ heta}}(D)} \; .$$

Using the maximum likelihood parameter, the total code-length becomes

$$\ell_{\mathsf{two-part}}(D) = \ell_1(\hat{ heta}) + \log_2 rac{1}{p_{\hat{ heta}}(D)} \; .$$

Hence, the *regret* of the two-part code is

$$\ell_{\mathsf{two-part}}(D) - \log_2 \frac{1}{\rho_{\hat{ heta}}(D)} = \ell_1(\hat{ heta})$$

Using the maximum likelihood parameter, the total code-length becomes

$$\ell_{\mathsf{two-part}}(D) = \ell_1(\hat{ heta}) + \log_2 rac{1}{p_{\hat{ heta}}(D)} \;\;.$$

Hence, the regret of the two-part code is

$$\ell_{\mathsf{two-part}}(D) - \log_2 \frac{1}{p_{\hat{\theta}}(D)} = \ell_1(\hat{\theta}) < cn \quad \mathsf{for all} \ c > 0 \ \mathsf{and large} \ n.$$

Two-Part Codes

Using the maximum likelihood parameter, the total code-length becomes

$$\ell_{\mathsf{two-part}}(D) = \ell_1(\hat{ heta}) + \log_2 rac{1}{p_{\hat{ heta}}(D)} \; .$$

Hence, the regret of the two-part code is

$$\ell_{\mathsf{two-part}}(D) - \log_2 \frac{1}{p_{\hat{\theta}}(D)} = \ell_1(\hat{\theta}) < cn \quad \mathsf{for all } c > 0 \mathsf{ and large } n.$$

For discrete parameter models the two-part code is universal.

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

Solution: Quantization. Choose a discrete subset of points, $\theta^{(1)}, \theta^{(2)}, \ldots$, and use only them.

If the points are sufficiently *dense* (in a code-length sense) then the code-length for data is still almost as short as $\min_{\theta \in \Theta} \ell_{\theta}(D)$.

What if the parameters are continuous (like polynomial coefficients)? We can't encode all continuous values with finite code-lengths!

Solution: Quantization. Choose a discrete subset of points, $\theta^{(1)}, \theta^{(2)}, \ldots$, and use only them.

If the points are sufficiently *dense* (in a code-length sense) then the code-length for data is still almost as short as $\min_{\theta \in \Theta} \ell_{\theta}(D)$.

How many points should there be in the subset $\theta^{(1)}, \theta^{(2)}, \ldots$?

How many points should there be in the subset $\theta^{(1)}, \theta^{(2)}, \ldots$?

Intuition: Data does not allow us to tell apart θ_1 and θ_2 if $|\theta_1 - \theta_2| < c \frac{1}{\sqrt{n}}$. \Rightarrow Don't care about higher precision.

How many points should there be in the subset $\theta^{(1)}, \theta^{(2)}, \ldots$?

Intuition: Data does not allow us to tell apart θ_1 and θ_2 if $|\theta_1 - \theta_2| < c \frac{1}{\sqrt{n}}$. \Rightarrow Don't care about higher precision.

Theorem

Optimal quantization accuracy is of order $\frac{1}{\sqrt{n}}$.

 \Rightarrow number of points $\approx \sqrt{n}^k = n^{k/2}$, where $k = \dim(\Theta)$.

How many points should there be in the subset $\theta^{(1)}, \theta^{(2)}, \dots$?

Intuition: Data does not allow us to tell apart θ_1 and θ_2 if $|\theta_1 - \theta_2| < c \frac{1}{\sqrt{n}}$. \Rightarrow Don't care about higher precision.

Theorem

Optimal quantization accuracy is of order $\frac{1}{\sqrt{n}}$.

 \Rightarrow number of points $\approx \sqrt{n^k} = n^{k/2}$, where $k = \dim(\Theta)$.

How many points should there be in the subset $\theta^{(1)}, \theta^{(2)}, \ldots$?

Intuition: Data does not allow us to tell apart θ_1 and θ_2 if $|\theta_1 - \theta_2| < c \frac{1}{\sqrt{n}}$. \Rightarrow Don't care about higher precision.

Theorem

Optimal quantization accuracy is of order $\frac{1}{\sqrt{n}}$. \Rightarrow number of points $\approx \sqrt{n}^k = n^{k/2}$, where $k = \dim(\Theta)$.

The code-length for the quantized parameters becomes

$$\ell(\theta^q) \approx \log_2 n^{k/2} = \frac{k}{2} \log_2 n .$$

Asymptotics: $\frac{k}{2} \log n$

With the precision $\frac{1}{\sqrt{n}}$ the code-length for data is almost optimal:

$$\min_{\theta^q \in \{\theta^{(1)}, \theta^{(2)}, \ldots\}} \ell_{\theta^q}(D) \approx \min_{\theta \in \Theta} \ell_{\theta}(D) = \log_2 \frac{1}{p_{\hat{\theta}}(D)}$$
.

Asymptotics: $\frac{k}{2} \log n$

With the precision $\frac{1}{\sqrt{n}}$ the code-length for data is almost optimal:

$$\min_{\theta^q \in \{\theta^{(1)}, \theta^{(2)}, \ldots\}} \ell_{\theta^q}(D) \approx \min_{\theta \in \Theta} \ell_{\theta}(D) = \log_2 \frac{1}{p_{\hat{\theta}}(D)}$$
.

The total code-length becomes then (\approx)

$$\log_2 \frac{1}{p_{\hat{\theta}}(D)} + \frac{k}{2} \log_2 n ,$$

so that the regret is $\frac{k}{2}\log_2 n$.

Asymptotics: $\frac{k}{2} \log n$

With the precision $\frac{1}{\sqrt{n}}$ the code-length for data is almost optimal:

$$\min_{\theta^q \in \{\theta^{(1)}, \theta^{(2)}, \ldots\}} \ell_{\theta^q}(D) \approx \min_{\theta \in \Theta} \ell_{\theta}(D) = \log_2 \frac{1}{p_{\hat{\theta}}(D)}.$$

The total code-length becomes then (\approx)

$$\log_2 \frac{1}{p_{\hat{\theta}}(D)} + \frac{k}{2} \log_2 n ,$$

so that the regret is $\frac{k}{2}\log_2 n$.

Since $\log_2 n$ grows slower than n, the **two-part code is universal** also for continuous parameter models.

- Universal Source Codes
 - Definitions
 - Universal Models
- 2 Two-Part Codes
 - Discrete Parameters
 - Continuous Parameters ooh-la-la
 - Asymptotics: $\frac{k}{2} \log n$
- Advanced Universal Codes
 - Mixture Codes
 - Normalized Maximum Likelihood
 - Universal Prediction

There are universal codes that are strictly better than the two-part code.

There are universal codes that are strictly better than the two-part code.

For instance, given a code for the parameters, let w be a distribution over the parameter space Θ (quantized if necessary) defined as

$$w(\theta) = \frac{2^{-\ell(\theta)}}{c}$$
, where $c = \sum_{\theta \in \Theta} 2^{-\ell(\theta)}$.

There are universal codes that are strictly better than the two-part code.

For instance, given a code for the parameters, let w be a distribution over the parameter space Θ (quantized if necessary) defined as

$$w(\theta) = \frac{2^{-\ell(\theta)}}{c}$$
, where $c = \sum_{\theta \in \Theta} 2^{-\ell(\theta)}$.

Let p^w be a **mixture distribution** over the data-sets $D \in \mathcal{D}$, defined as

$$p^{w}(D) = \sum_{\theta \in \Theta} p_{\theta}(D) w(\theta) ,$$

i.e., an "average" distribution, where each p_{θ} is weighted by $w(\theta)$.

The code-length of the **mixture model** p^w is given by

$$\begin{split} \log_2 \frac{1}{\sum_{\theta \in \Theta} p_{\theta}(D) \, w(\theta)} &\leq \log_2 \frac{1}{p_{\hat{\theta}}(D) \, w(\hat{\theta})} \quad \text{[corrected on Oct 5, 2009]} \\ &= \log_2 \frac{1}{p_{\hat{\theta}}(D)} + \log_2 \frac{c}{2^{-\ell(\hat{\theta})}} \; . \end{split}$$

The code-length of the **mixture model** p^w is given by

$$\begin{split} \log_2 \frac{1}{\sum_{\theta \in \Theta} p_{\theta}(D) \, w(\theta)} &\leq \log_2 \frac{1}{p_{\hat{\theta}}(D) \, w(\hat{\theta})} \quad \text{[corrected on Oct 5, 2009]} \\ &= \log_2 \frac{1}{p_{\hat{\theta}}(D)} + \log_2 \frac{c}{2^{-\ell(\hat{\theta})}} \; . \end{split}$$

The right-hand side is equal to

$$\underbrace{\log_2 \frac{1}{p_{\hat{\theta}}(D)} + \ell(\hat{\theta})}_{\text{two-part code}} \underbrace{-\log_2 \frac{1}{c}}_{\leq 0} \ ,$$

The code-length of the **mixture model** p^w is given by

$$\begin{split} \log_2 \frac{1}{\sum_{\theta \in \Theta} p_{\theta}(D) \, w(\theta)} &\leq \log_2 \frac{1}{p_{\hat{\theta}}(D) \, w(\hat{\theta})} \quad \text{[corrected on Oct 5, 2009]} \\ &= \log_2 \frac{1}{p_{\hat{\theta}}(D)} + \log_2 \frac{c}{2^{-\ell(\hat{\theta})}} \; . \end{split}$$

The right-hand side is equal to

$$\underbrace{\log_2 \frac{1}{p_{\hat{\theta}}(D)} + \ell(\hat{\theta})}_{\text{two-part code}} \underbrace{-\log_2 \frac{1}{c}}_{\leq 0} \ ,$$

The mixture code is always at least as good as the two-part code.

Consider again the maximum likelihood model

$$p_{\hat{\theta}}(D) = \max_{\theta \in \Theta} p_{\theta}(D)$$
.

It is the best probability assignment achievable under model \mathcal{M} .

Consider again the maximum likelihood model

$$p_{\hat{\theta}}(D) = \max_{\theta \in \Theta} p_{\theta}(D)$$
.

It is the best probability assignment achievable under model \mathcal{M} .

Unfortunately, it is not possible to use the ML model for coding because is not a probability distribution, i.e.,

$$C = \sum_{D \in \mathcal{D}} p_{\hat{ heta}}(D) > 1 \;\;,$$

unless $\hat{\theta}$ is constant wrt. D.

Normalized Maximum Likelihood

The **normalized maximum likelihood (NML) model** is obtained by normalizing the ML model:

$$p_{
m nml}(D) = rac{p_{\hat{ heta}}(D)}{C} \;\;, \quad ext{where} \; C = \sum_{D \in \mathcal{D}} p_{\hat{ heta}}(D) \;\;.$$

Normalized Maximum Likelihood

The **normalized maximum likelihood (NML) model** is obtained by normalizing the ML model:

$$ho_{
m nml}(D) = rac{
ho_{\hat{ heta}}(D)}{C} \;\;, \quad ext{where}\; C = \sum_{D \in \mathcal{D}}
ho_{\hat{ heta}}(D) \;\;.$$

The regret of NML is given by

$$\log_2 \frac{1}{p_{\mathrm{nml}}(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} = \log_2 \frac{C}{p_{\hat{\theta}}(D)} - \log_2 \frac{1}{p_{\hat{\theta}}(D)} = \log_2 C \enspace ,$$

which is constant wrt. D.

Let q be any distribution other than p_{nml} . Then

• there must a data-set $D' \in \mathcal{D}$ for which we have

$$q(D') < p_{\mathrm{nml}}(D')$$

Let q be any distribution other than p_{nml} . Then

• there must a data-set $D' \in \mathcal{D}$ for which we have

$$q(D') < p_{\mathrm{nml}}(D')$$
 $\Leftrightarrow \underbrace{\log_2 \frac{1}{q(D')} - \log_2 \frac{1}{p_{\hat{\theta}}(D')}}_{\text{regret of } q} > \underbrace{\log_2 \frac{1}{p_{\mathrm{nml}}(D')} - \log_2 \frac{1}{p_{\hat{\theta}}(D')}}_{\text{regret of } p_{\mathrm{nml}}},$

Let q be any distribution other than p_{nml} . Then

• there must a data-set $D' \in \mathcal{D}$ for which we have

$$q(D') < p_{ ext{nml}}(D')$$
 $\Leftrightarrow \underbrace{\log_2 rac{1}{q(D')} - \log_2 rac{1}{p_{\hat{ heta}}(D')}}_{ ext{regret of } q} > \underbrace{\log_2 rac{1}{p_{ ext{nml}}(D')} - \log_2 rac{1}{p_{\hat{ heta}}(D')}}_{ ext{regret of } p_{ ext{nml}}}$

For D', the regret of q is greater than $\log_2 C$, the regret of p_{nml} .

Let q be any distribution other than p_{nml} . Then

• there must a data-set $D' \in \mathcal{D}$ for which we have

$$q(D') < p_{ ext{nml}}(D')$$
 $\Leftrightarrow \underbrace{\log_2 rac{1}{q(D')} - \log_2 rac{1}{p_{\hat{ heta}}(D')}}_{ ext{regret of } q} > \underbrace{\log_2 rac{1}{p_{ ext{nml}}(D')} - \log_2 rac{1}{p_{\hat{ heta}}(D')}}_{ ext{regret of } p_{ ext{nml}}}$

For D', the regret of q is greater than $\log_2 C$, the regret of p_{nml} .

Thus, the worst-case regret of q is greater than the (worst-case) regret of NML. \Rightarrow NML has the least possible **worst-case regret**.

Universal Models

For 'smooth' parametric models, the regret of NML, $\log_2 C$, grows slower than n, so **NML** is also a universal model.

Universal Models

For 'smooth' parametric models, the regret of NML, $\log_2 C$, grows slower than n, so **NML** is also a universal model.

We have seen three kinds of universal codes:

- two-part,
- mixture,
- NML.

Universal Models

For 'smooth' parametric models, the regret of NML, $\log_2 C$, grows slower than n, so **NML** is also a universal model.

We have seen three kinds of universal codes:

- two-part,
- mixture,
- MML.

There are also universal codes that are not based on any (explicit) model class: Lempel-Ziv (gzip)!

So what do we do with them?

So what do we do with them?

We can use universal codes for (at least) three purposes:

So what do we do with them?

We can use universal codes for (at least) three purposes:

compression,

So what do we do with them?

We can use universal codes for (at least) three purposes:

- compression,
- prediction,

So what do we do with them?

We can use universal codes for (at least) three purposes:

- compression,
- prediction,
- Model selection.

By the connection $p(D) = 2^{-\ell(D)}$, the following are equivalent:

• good compression: $\ell(D)$ is small,

By the connection $p(D) = 2^{-\ell(D)}$, the following are equivalent:

- good compression: $\ell(D)$ is small,
- good probability assignment:

$$p(D) = \prod_{i=1}^{n} P(D_i \mid D_1, \dots, D_{i-1})$$
 is high.

By the connection $p(D) = 2^{-\ell(D)}$, the following are equivalent:

- good compression: $\ell(D)$ is small,
- good probability assignment: $p(D) = \prod_{i=1}^{n} P(D_i \mid D_1, \dots, D_{i-1})$ is high.
- good predictions: $p(D_i \mid D_1, ..., D_{i-1})$ is high for most $i \in \{1, ..., n\}$.

By the connection $p(D) = 2^{-\ell(D)}$, the following are equivalent:

- good compression: $\ell(D)$ is small,
- good probability assignment: $p(D) = \prod_{i=1}^{n} P(D_i \mid D_1, \dots, D_{i-1})$ is high.
- good predictions: $p(D_i \mid D_1, ..., D_{i-1})$ is high for most $i \in \{1, ..., n\}$.

For instance, the mixture code gives a natural predictor which is equivalent to **Bayesian prediction**.

By the connection $p(D) = 2^{-\ell(D)}$, the following are equivalent:

- good compression: $\ell(D)$ is small,
- good probability assignment: $p(D) = \prod_{i=1}^{n} P(D_i \mid D_1, \dots, D_{i-1})$ is high.
- good predictions: $p(D_i \mid D_1, ..., D_{i-1})$ is high for most $i \in \{1, ..., n\}$.

For instance, the mixture code gives a natural predictor which is equivalent to **Bayesian prediction**.

The NML model gives predictions that are good relative to the best model in the model class, **no matter what happens**.

Model (Class) Selection

Since a model class that enables good compression of the data must be based on exploiting the **regular features in the data**, the code-length can be used as a **yard-stick** for comparing model classes.

MDL Principle

MDL Principle

"Old-style":

• Choose the model $p_{\theta} \in \mathcal{M}$ that yields the shortest *two-part* code-length

$$\min_{\theta,\mathcal{M}} \ \ell(\mathcal{M}) + \ell_1(\theta) + \log_2 \frac{1}{p_{\theta}(D)}.$$

Modern:

ullet Choose the model class ${\mathcal M}$ that yields the shortest universal code-length

$$\min_{\mathcal{M}} \ell(\mathcal{M}) + \ell_{\mathcal{M}}(D).$$

Next Week

Next week:

Next Week

Next week:

• more about MDL principle,

Next Week

Next week:

- more about MDL principle,
- even more about MDL principle.