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Definitions

We call a probability distribution p : D → [0, 1] a model.

A model class M = {pθ : θ ∈ Θ} is a set of probability
distributions (models).

The model within M that achieves the shortest code-length for
data x is the maximum likelihood (ML) model:

min
θ∈Θ

log2
1

pθ(D)
= log2

1

pθ̂(D)
.

Depends on D!

For model q, the excess code-length or “regret” over the ML
model in M is given by

log2
1

q(D)
− log2

1

pθ̂(D)
.
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Universal model

A model (code) whose regret grows slower than n is said to be a
universal model (code) relative to model class M:

lim
n→∞

1

n

[
log2

1

q(D)
− log2

1

pθ̂(D)

]
= 0 . (1)

This is another (stochastic) definition of universality, equivalent to
1
nD(pθ ‖ q) → 0 for all θ ∈ Θ. It is weaker since (1) ⇒ (2).
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The typical situation might be as follows:

1 We know (think) that the source symbols are generated by a
Bernoulli model with parameter p ∈ [0, 1].

2 However, we do not know p in advance.

3 We’d like to encode data at rate H(p).
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Two-Part Codes

Let M = {pθ : θ ∈ Θ} be a parametric probabilistic model class,
i.e., a set of distributions pθ indexed by parameter θ.

If the parameter space Θ is discrete, we can construct a (prefix)
code C1 : Θ → {0, 1}∗ which maps each parameter value to a
codeword of length `1(θ).

For any distribution pθ, the Shannon code-lengths satisfy

`θ(D) =

⌈
log2

1

pθ(D)

⌉
≈ log2

1

pθ(D)
.

Using parameter value θ, the total code-length becomes (≈)

`1(θ) + log2
1

pθ(D)
.
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Two-Part Codes

Using the maximum likelihood parameter, the total code-length
becomes

`two-part(D) = `1(θ̂) + log2
1

pθ̂(D)
.

Hence, the regret of the two-part code is

`two-part(D)− log2
1

pθ̂(D)
= `1(θ̂)

< cn for all c > 0 and large n.

For discrete parameter models the two-part code is universal.
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Continuous Parameters

What if the parameters are continuous (like polynomial
coefficients)? We can’t encode all continuous values with finite
code-lengths!

Solution: Quantization. Choose a discrete subset of points,
θ(1), θ(2), . . ., and use only them.

Information Geometry!

If the points are sufficiently dense (in a code-length sense) then the
code-length for data is still almost as short as minθ∈Θ `θ(D).
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About Quantization

How many points should there be in the subset θ(1), θ(2), . . .?

Intuition: Data does not allow us to tell apart θ1 and θ2 if

|θ1 − θ2| < c
1√
n
. ⇒ Don’t care about higher precision.

Theorem

Optimal quantization accuracy is of order
1√
n
.

⇒ number of points ≈
√

n
k

= nk/2, where k = dim(Θ).
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Intuition: Data does not allow us to tell apart θ1 and θ2 if

|θ1 − θ2| < c
1√
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Theorem

Optimal quantization accuracy is of order
1√
n
.

⇒ number of points ≈
√

n
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= nk/2, where k = dim(Θ).

The code-length for the quantized parameters becomes

`(θq) ≈ log2 nk/2 =
k

2
log2 n .
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With the precision 1√
n

the code-length for data is almost optimal:

min
θq∈{θ(1),θ(2),...}

`θq(D) ≈ min
θ∈Θ

`θ(D) = log2
1

pθ̂(D)
.

The total code-length becomes then (≈)

log2
1

pθ̂(D)
+

k

2
log2 n ,

so that the regret is
k

2
log2 n.

Since log2 n grows slower than n, the two-part code is universal
also for continuous parameter models.
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There are universal codes that are strictly better than the two-part
code.

For instance, given a code for the parameters, let w be a
distribution over the parameter space Θ (quantized if necessary)
defined as

w(θ) =
2−`(θ)

c
, where c =

∑
θ∈Θ

2−`(θ).

Let pw be a mixture distribution over the data-sets D ∈ D,
defined as

pw (D) =
∑
θ∈Θ

pθ(D) w(θ) ,

i.e., an “average” distribution, where each pθ is weighted by w(θ).
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The code-length of the mixture model pw is given by

log2
1∑

θ∈Θ pθ(D) w(θ)
≤ log2

1

pθ̂(D) w(θ̂)
[corrected on Oct 5, 2009]

= log2
1

pθ̂(D)
+ log2

c

2−`(θ̂)
.

The right-hand side is equal to

log2
1

pθ̂(D)
+ `(θ̂)︸ ︷︷ ︸

two-part code

− log2
1

c︸ ︷︷ ︸
≤0

,

The mixture code is always at least as good as the two-part code.
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Consider again the maximum likelihood model

pθ̂(D) = max
θ∈Θ

pθ(D) .

It is the best probability assignment achievable under model M.

Unfortunately, it is not possible to use the ML model for coding
because is not a probability distribution, i.e.,

C =
∑
D∈D

pθ̂(D) > 1 ,

unless θ̂ is constant wrt. D.
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Normalized Maximum Likelihood

The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:

pnml(D) =
pθ̂(D)

C
, where C =

∑
D∈D

pθ̂(D) .

The regret of NML is given by

log2
1

pnml(D)
− log2

1

pθ̂(D)
= log2

C

pθ̂(D)
− log2

1

pθ̂(D)
= log2 C ,

which is constant wrt. D.
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Let q be any distribution other than pnml. Then

there must a data-set D ′ ∈ D for which we have

q(D ′) < pnml(D
′)

⇔ log2
1

q(D ′)
− log2

1

pθ̂(D
′)︸ ︷︷ ︸

regret of q

> log2
1

pnml(D ′)
− log2

1

pθ̂(D
′)︸ ︷︷ ︸

regret of pnml

,

For D ′, the regret of q is greater than log2 C , the regret of pnml.

Thus, the worst-case regret of q is greater than the (worst-case)
regret of NML. ⇒ NML has the least possible worst-case regret.
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Universal Models

For ‘smooth’ parametric models, the regret of NML, log2 C , grows
slower than n, so NML is also a universal model.

We have seen three kinds of universal codes:

1 two-part,

2 mixture,

3 NML.

There are also universal codes that are not based on any (explicit)
model class: Lempel-Ziv (gzip)!
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So what do we do with them?

We can use universal codes for (at least) three purposes:

1 compression,

2 prediction,

3 model selection.
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Universal Prediction

By the connection p(D) = 2−`(D), the following are equivalent:

good compression: `(D) is small,

good probability assignment:
p(D) =

∏n
i=1 P(Di | D1, . . . ,Di−1) is high.

good predictions: p(Di | D1, . . . ,Di−1) is high for most
i ∈ {1, . . . , n}.

For instance, the mixture code gives a natural predictor which is
equivalent to Bayesian prediction.

The NML model gives predictions that are good relative to the
best model in the model class, no matter what happens.
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The NML model gives predictions that are good relative to the
best model in the model class, no matter what happens.
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Model (Class) Selection

Since a model class that enables good compression of the data
must be based on exploiting the regular features in the data, the
code-length can be used as a yard-stick for comparing model
classes.
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MDL Principle

MDL Principle

“Old-style”:

Choose the model pθ ∈M that yields the shortest two-part
code-length

min
θ,M

`(M) + `1(θ) + log2
1

pθ(D)
.

Modern:

Choose the model class M that yields the shortest universal
code-length

min
M

`(M) + `M(D).
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Next Week

Next week:

more about MDL principle,

even more about MDL principle.
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