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Density function:
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Mean: pu = E[X],

variance 02 = E[(X — p)?]
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Density function
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Density function:
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Mean: u = E[X],

variance 02 = E[(X — pu)?]
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Density function:
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Mean: u = E[X],

variance 02 = E[(X — pu)?]
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Density function:
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Density function:

.d.
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202
Mean: p = E[X],

variance 02 = E[(X — 11)?]
Maximum likelihood: fi = 1 ix- 62 =
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In order to encode data using, say, the Gaussian density we face
the problem of | How to encode continuous data? |
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In order to encode data using, say, the Gaussian density we face

the problem of | How to encode continuous data? |

We already know how to encode using models with continuous
parameters:
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In order to encode data using, say, the Gaussian density we face

the problem of | How to encode continuous data? |

We already know how to encode using models with continuous
parameters:

@ two-part with optimal quantization (z %Iogz n),
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How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face
the problem of ’ How to encode continuous data?

We already know how to encode using models with continuous
parameters:

k
2

e two-part with optimal quantization (= 5 log, n),

@ mixture code,
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How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face
the problem of ’ How to encode continuous data?

We already know how to encode using models with continuous
parameters:

k
2

e two-part with optimal quantization (= 5 log, n),

@ mixture code,
o NML.
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How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face

the problem of ’ How to encode continuous data?

We already know how to encode using models with continuous

parameters:

e two-part with optimal quantization (=~

@ mixture code,
o NML.

% log, n),

Obviously not possible to encode data with infinite precision. Have
to discretize: encode x only up to precision 9.

Teemu Roos
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data (up to precision §)?

What is the optimal rate for encoding (compressing) continuous
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What is the optimal rate for encoding (compressing) continuous
data (up to precision §)?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...
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What is the optimal rate for encoding (compressing) continuous
data (up to precision §)?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Differential entropy

«0)>» «Fr «=)» « =)



Encoding Continuous Data

Outline Differential Entropy
MDL for Gaussian Models Linear Regression
MDL for Multinomial Models Subset Selection Problem

Wavelet Denoising

Differential Entropy

What is the optimal rate for encoding (compressing) continuous
data (up to precision 4)?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Differential entropy

Let X € R be a continuous random variable with probability
density f : R — RT.

Teemu Roos Information-Theoretic Modeling
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Differential Entropy

What is the optimal rate for encoding (compressing) continuous
data (up to precision 4)?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Differential entropy

Let X € R be a continuous random variable with probability
density f : R — RT.

The differential entropy of X is defined as
h(X) = Ex~f {Iogz FIX ] /f x) log, 7 )d

Teemu Roos Information-Theoretic Modeling



well approximated by f(td)J.

If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
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If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
well approximated by f(td)J.

Hence, the minimum coding rate of the discretized random
variable X? is given by

H(X%) ~ Z f(x)

1
log, —
0log> 7035
x=td:teZ
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If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
well approximated by f(td)J.

Hence, the minimum coding rate of the discretized random
variable X? is given by

H(X%) ~ Z f(x)

1
0logy ——
x=td : tEZ f(X)5

400 1
5?0) f(X) |0g2 W dX.
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If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
well approximated by f(td)J.

Hence, the minimum coding rate of the discretized random
variable X? is given by

1
HX)~ > f(x)dlog, 06
x=td : tEZ
+o0 1
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Differential Entropy

If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
well approximated by f(td)J.

Hence, the minimum coding rate of the discretized random
variable X? is given by

1
H(Xé)% E f(X)5|0g2w
x=td : tEZ
400 1
Q . f(X) |0g2 ﬁ dx — |Og2 (5

Hence, the rate is approximately H(X?%) ~ h(X) — log, é.

Teemu Roos Information-Theoretic Modeling



The minimum coding rate h(X)— log, ¢ is achieved if and only if
the code-word lengths are chosen according to

{(x) = log, ﬁ
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The minimum coding rate h(X)— log, ¢ is achieved if and only if
the code-word lengths are chosen according to

1
=log, ——.
K(X) 0go f(x)(5
just pretend they don't exist...

In practice, no one will notice if we forget about the §'s, so let’s
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The minimum coding rate h(X)

the code-word lengths are chosen according to

is achieved if and only if
1
l(x) =logy ——.
(X) 0go f(X)
In practice, no one will notice if we forget about the §'s, so let’s
just pretend they don't exist...
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Recall the Gaussian density function:

d
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Recall the Gaussian density function:

(iid
¢p,02(xla-- 7Xn) =

) (27‘(‘0’2) —n/2

The code-length is then

n 1 u
5 logy(2m0?) — 2n2)o? > (xi = w)
i1
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Ok, we have our Gaussian code-length formula:

Z(x,- — )2
i=1



n

Ok, we have our Gaussian code-length formula:

1 a
o2 _—E A Y
2 logy(2m0”) (2In2)0? p 1(X' H”

parameters:

Let's use the two-part code and plug in the maximum likelihood

1< -
ﬁZE.Z;Xi, 32:;2(&'—1&)2
1= =
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n

Ok, we have our Gaussian code-length formula:

1 n
logn (2762 _—Z 2.
2 ng( o ) (2|n 2)6_2 i:1(xl M)

parameters:

Let's use the two-part code and plug in the maximum likelihood

1< -
ﬁZE.Z;Xi, 32:;2(&'—1&)2
1= =
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n

Ok, we have our Gaussian code-length formula:

2

R 1 < A
log,(2767) — WZ(Xi — ).
i=1

parameters:

Let's use the two-part code and plug in the maximum likelihood

1< 1 —
ﬁZE.Z;Xi, 32:;2(&'—/3)2
1= =
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n

Ok, we have our Gaussian code-length formula:

5 log,(2762) —

n

2In2’
parameters:

Let's use the two-part code and plug in the maximum likelihood

1< 1 <
ﬁz;;x;, &2=;§;(x,-—m2
1= 1=
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n

Ok, we have our Gaussian code-length formula:

5 log, 52 + constant.

parameters:

Let's use the two-part code and plug in the maximum likelihood

1< 1 <
ﬁz;;x;, &2=;§;(x,-—m2
1= 1=
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We get the total (two-part) code-length formula:

g log, 62 + > log, n + constant.
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We get the total (two-part) code-length formula:

g log, 62 + > log, n + constant.

Since we have two parameters, 1 and 02, we let k = 2.
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n

> log, 52 +

We get the total (two-part) code-length formula:

> log, n + constant.

Since we have two parameters, 1 and o2, we let k = 2.
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A similar treatment can be given to linear regression models.
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a set of coefficients fy, .

A similar treatment can be given to linear regression models.
The model includes a set of regressor variables xi,...,x, € R, and

-+ Bp.
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Linear Regression

A similar treatment can be given to linear regression models.

The model includes a set of regressor variables xi,...,x, € R, and
a set of coefficients f31,. .., Bp.

The dependent variable, Y, is assumed to be Gaussian:

@ the mean p is given as a linear combination of the regressors:

M:/ﬁlxl+"'+ﬁpxp:ﬂlxa

@ variance is some parameter 2.

Teemu Roos Information-Theoretic Modeling
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X11

Xnl

X1p

Xnp

&)
g=| -

5

For a sample of size n, the matrix notation is convenient:
Y1

€1

€n



X11 le
| ox=
Yn

Xnl

Xnp
Then the model can be written as

Y = X6+,
where ¢; ~ N(0,52).
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For a sample of size n, the matrix notation is convenient:
Y1

€1

€n



The maximum likelihood estimators are now

= (X'X)"IX'Y,

5% =

1 A
Y = XB|3 =
Y - X3l
where RSS is the “residual sum of squares”
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B=

The maximum likelihood estimators are now

_ D RSS
(X'X)" X = —||Y XB5 =
where RSS is the

residual sum of squares
applies:

Since the errors are assumed Gaussian, our code-length formula
. k
log, 5%+

log, n + constant
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B=

The maximum likelihood estimators are now

(Xlx)—lxl
where RSS is the

£2 RSS
= —||Y XB5 =

residual sum of squares

applies:

Since the errors are assumed Gaussian, our code-length formula
5 log, RSS +

log, n 4 constant
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Linear Regression

The maximum likelihood estimators are now

5 _ o 1 . RSS
B=(X'X)"IX'Yy, &%= Iy - Xp|5 = —

where RSS is the "residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula
applies:

n k

5 log, RSS + > log, n + constant.

The number of parameters is now p + 1 (p of the 3s and 02), so
we get...

Teemu Roos Information-Theoretic Modeling
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Linear Regression

The maximum likelihood estimators are now
N 1 A
= (XXX, 8= Y - X =

where RSS is the “residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula

applies:
p+1

g log, RSS + log, n 4 constant.

The number of parameters is now p + 1 (p of the 3s and ¢2), so
we get...
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may be irrelevant.

Often we have a large set of potential regressors, some of which
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:
S| +1

. n
min | 5 logy RSSs + — log, n|

where RSSs is the RSS obtained by using subset S of the
regressors.

Teemu Roos Information-Theoretic Modeling
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:

|S|+1

. n
min | 5 logy RSSs + — log, n|

where RSSs is the RSS obtained by using subset S of the
regressors.

= Exercise 5.3

Teemu Roos Information-Theoretic Modeling



is to use wavelets.

One particularly useful way to obtain the regressor (design) matrix
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Wavelet Denoising

One particularly useful way to obtain the regressor (design) matrix
is to use wavelets.

Image by Gabriel Peyré

[m] = = =
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Wavelet Denoising

[EEE TRANS. SIGNAL PROCESSING. VOL. 7. NO. 7, 2009

MDL Denoising Revisited

Teemu Roos Member, Petri Myllymiki, and Jorma Rissanen Fellow

Abstract— We refine and extend an earlier minimum de-
scription length (MDL) denoising criterion for wavelet-based
denoising. We start by showing that the denoising problem can be
reformulated as a clustering problem, where the goal is to obtain
separate clusters for informative and non-informative wavelet
coefficients, respectively. This suggests two refinements, adding a
code-length for the model index, and extending the model in order
to account for subband-dependent coefficient distributions. A
third refinement is the derivation of soft thresholding inspired by
predictive universal coding with weighted mixtures. We propose
a practical method incorporating all three refinements, which is
shown to achieve good performance and robustness in denoising
both artificial and natural signals.

Index Terms— Minimum description length (MDL) principle,
wavelets, denoising.

Teemu Roos

(both of which include the Gaussian and d¢
densities as special cases).

A third approach to denoising is based
description length (MDL) principle [16]-[2(
ent MDL denoising methods have been su;
[21]-[25]. We focus on what we consider
MDL approach, namely that of Rissanen [24
is two-fold: First, as an immediate result
extending the earlier MDL denoising mett
new practical method with greatly impro
and robustness. Secondly, the denoising p
to illustrate theoretical issues related to the
involving the problem of unbounded paran
and the necessity of encoding the model cl

Information-Theoretic Modeling



Main effort in constructing a universal code:
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Main effort in constructing a universal code:

@ combines two-part, mixture, and NML universal codes,
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Main effort in constructing a universal code:

@ combines two-part, mixture, and NML universal codes,
@ bounds on NML normalization region required,



Main effort in constructing a universal code:

@ combines two-part, mixture, and NML universal codes,
@ bounds on NML normalization region required,

© important lesson: remember to encode model class.
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very simple:

The multinomial model — the generalization of Bernoulli — is

forje{l,...,m}
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very simple:

The multinomial model — the generalization of Bernoulli — is
Maximum likelihood:

forje{l,...,m}

~

0;

_#xi=J)

n
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very simple:

The multinomial model — the generalization of Bernoulli — is
Maximum likelihood:

forje{l,...,m}

~

0;

_#xi=J)

n

Two-part, mixture, and NML models readily defined.
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very simple:

Maximum likelihood:

forje{l,...,m}

~

0;

_#xi=J)

n

Two-part, mixture, and NML models readily defined.
= Exercises 5.1 & 5.2
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The multinomial model — the generalization of Bernoulli — is



model

ps(x")
cr’

cr =

n

The naive way to compute the normalizing constant in the NML

Z pé(yn)v
takes exponential time (Q(m"))

yneXn
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model

ps(x")
cr’

cr =

n

The naive way to compute the normalizing constant in the NML

> ply™),

yneXn
takes exponential time (Q(m"))

The second most naive way takes “only” polynomial time,

O(n™=1), but is still intractable unless m < 3 (or maybe m < 4).
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There is a way — which is not naive at alll — to do it in linear
time, O(n+ m), using the following recursion:

m _ ~m—1 n m—2
=G e
and sample size n.

where C]7 is the normalizing constant for an m-ary multinomial
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Outline Universal Codes

MDL for Gaussian Models EE.JS: NML CDom[l)tutagi(t)p "
MDL for Multinomial Models C;S ogram Lensity tstimation
ustering
Fast NML for Multinomials
There is a way — which is not naive at alll — to do it in linear

time, O(n+ m), using the following recursion:
-1 2
G =qr o 2C’"

where C/ is the normalizing constant for an m-ary multinomial
and sample size n.

The trick is to reduce the general case to C} =1 and C?, the
latter of which can be computed in linear time (using the second
most naive approach).

Teemu Roos Information-Theoretic Modeling



Universal Codes

Outli .
MDL for Gaussian ML:)dlenlz EE.JS: NML CDomPtUtag'?n di
MDL for Multinomial Models C;S ogram Lensity tstimation
ustering
Fast NML for Multinomials
There is a way — which is not naive at alll — to do it in linear

time, O(n+ m), using the following recursion:
-1 n -2
="+ mC,’," ,

where C/ is the normalizing constant for an m-ary multinomial
and sample size n.

The trick is to reduce the general case to C} =1 and C?, the
latter of which can be computed in linear time (using the second
most naive approach).

Kontkanen & Myllymaki, “A linear-time algorithm for computing the
multinomial stochastic complexity”, Information Processing Letters 103
(2007), 6, pp. 227-233

Teemu Roos Information-Theoretic Modeling
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For a histogram density, we get again a code-length formula where
is the only essential term.
f(x)
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For a histogram density, we get again a code-length formula where

log, m is the only essential term.

Choosing the number and the positions of break-points can be
done by MDL.
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Universal Codes
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Outline
MDL for Gaussian Models
MDL for Multinomial Models

Histogram Density Estimation

For a histogram density, we get again a code-length formula where

1
log, m is the only essential term.

Choosing the number and the positions of break-points can be
done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.

Teemu Roos Information-Theoretic Modeling



Universal Codes

Fast NML Computation
Histogram Density Estimation
Clustering

Outline
MDL for Gaussian Models
MDL for Multinomial Models

Histogram Density Estimation

For a histogram density, we get again a code-length formula where

1
log, m is the only essential term.

Choosing the number and the positions of break-points can be
done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.
= Linear time algorithm can be used.

Teemu Roos Information-Theoretic Modeling
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Histogram Density Estimation

MDL Histogram Density Estimation

Petri Kontkanen, Petri Myllyméki
Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)
University of Helsinki and Helsinki University of Technology
P.0.Box 68 (Department of Computer Science)
FIN-00014 University of Helsinki, Finland
{Firstname}.{Lastname}Chiit.fi

Abstract only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued ( anen, Speed, & Yu, 1992) that reg-
ular histograms are only good for describing roughly
uniform data. If the data distribution is strongly non-
uniform, the bin count must necessarily be high if one
wants to capture the details of the high density portion
of the data. This in turn means that an unnecessary
large amount of bins is wasted in the low den

We regard histogram density estimation as
a model selection problem. Qur approach
is based on the information-theoretic min-
imum  description length (MDL) principle,
which can be applied for tasks such as data

v estimation, image denois-
. E S AT
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multinomial variables.

Consider the problem of clustering vectors of (independent)
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multinomial variables.

Consider the problem of clustering vectors of (independent)

This can be seen as a way to encode (compress) the data:
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multinomial variables.

Consider the problem of clustering vectors of (independent)

This can be seen as a way to encode (compress) the data:
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Universal Codes

Fast NML Computation
Histogram Density Estimation
Clustering

Outline
MDL for Gaussian Models
MDL for Multinomial Models

Clustering

Consider the problem of clustering vectors of (independent)
multinomial variables.

This can be seen as a way to encode (compress) the data:
@ first encode the cluster index of each observation vector,

@ then encode the observations using separate (multinomial)
models.

Again, the problem is reduced to the multinomial case, and the
fast NML algorithm can be applied.

Teemu Roos Information-Theoretic Modeling
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The clustering model can be interpreted as the naive Bayes

structure:

label = cluster index

fi,...,f, are features

The structure is very restrictive. Generalization achieved by
Bayesian networks.

MDL criterion for learning Bayesian network structures (Lecture 9)
again based on fast NML for multinomials.
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The final week:

@ Tuesday: further topics in information theory

o lossy compression

o Kolmogorov complexity
o universal prediction

e gambling

@ Friday: redundant lecture

o looking back: what have we learned
@ questions and answers

o advice for final exam

e introduction to project

@ last exercises
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