Sample solutions to Homework 3,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

September 25, 2014

Question 1

(a)
Let

\[
\begin{align*}
\text{SET1} &= \text{the set of prefix(-free) codes}, \\
\text{SET2} &= \text{the set of decodable codes}, \\
\text{SET3} &= \text{the set of codes that satisfy the Kraft inequality,} \\
\text{SET4} &= \text{the set of all possible symbol codes.}
\end{align*}
\]

Then \(\text{SET1} \subseteq \text{SET2} \subseteq \text{SET3} \subseteq \text{SET4}.\)

(b)

- A code with codewords \(\{0, 01\}\) is not a prefix(-free) code, but it is decodable.
- A code with codewords \(\{0, 00\}\) is not decodable, but is satisfies the Kraft inequality: \(2^{-1} + 2^{-2} = 0.75.\)
- A code with codewords \(\{0, 1, 01\}\) is a symbol code, but it does not satisfy the Kraft inequality: \(2^{-1} + 2^{-1} + 2^{-2} = 1.25.\)
Question 2

1. Sort the symbols:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>p_i</td>
<td>0.9</td>
<td>0.04</td>
<td>0.02</td>
<td>0.015</td>
<td>0.015</td>
<td>0.01</td>
</tr>
</tbody>
</table>

2. Split into \{(x_1), (x_2, \ldots, x_6)\}:

- A 0
- C 1
- B 1
- E 1
- F 1
- D 1

The code for the symbol A is now ready.

3. Split (x_2, \ldots, x_6) into \{(x_2), (x_3, \ldots, x_6)\}. (Note that the split \{(x_2, x_3), (x_4, x_5, x_6)\} would be equally good.)

- A 0
- C 10
- B 11
- E 11
- F 11
- D 11

The codes for the symbols A and C are now ready.

4. Split (x_3, x_4, x_5, x_6) into \{(x_3, x_4), (x_5, x_6)\}.

- A 0
- C 10
- B 110
- E 110
- F 111
- D 111
5. The pairs \((x_3, x_4)\) and \((x_5, x_6)\) are can be split in only one way. The end result is the following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1100</td>
</tr>
<tr>
<td>E</td>
<td>1101</td>
</tr>
<tr>
<td>F</td>
<td>1110</td>
</tr>
<tr>
<td>D</td>
<td>1111</td>
</tr>
</tbody>
</table>

(Note: had we chosen the split \(\{(x_2, x_3), (x_4, x_5, x_6)\}\) in step 3, the resulting codewords would be \(A = 0, C = 100, B = 101, E = 110, F = 1110, D = 1111\).)

The expected code-length for this particular code Shannon–Fano code is

\[
\sum_{i=1}^{6} \ell_i p_i = 1 \cdot 0.9 + 2 \cdot 0.04 + 4 \cdot (0.02 + 0.015 + 0.015 + 0.01)
\]

\[
= 1.22.
\]

The entropy of the source is

\[
H(X) = -\sum_{i=1}^{6} p_i \log_2 p_i \approx 0.6836
\]

and the expected code-length of the Shannon code for this source is

\[
E[\ell_{\text{Shannon}}(X)] = \sum_{i=1}^{6} p_i \left\lceil \log_2 \frac{1}{p_i} \right\rceil = 1.5.
\]

This is consistent with the known inequality

\[
E[\ell_{\text{Shannon}}(X)] \leq H(X) + 1.
\]
Question 3

The attached Python 3 program *shannon_fano.py* reads data from standard input and computes the desired quantities.

If we give it as input its own source code, we get the following:

\[
\begin{align*}
\text{entropy} &\approx 4.58, \\
\text{code-length} &\approx 4.60, \\
E[\text{code-length of the Shannon code}] &\approx 5.11.
\end{align*}
\]

The code-length is almost the same as the entropy, so this is a very good result. The Shannon code would not, in expectation, work as well.

Question 4

(a)

The binary tree given by the Huffman code is shown in Figure 1. We have always assigned the digit 0 to the left branch and the digit 1 to the right branch. One can read the codewords from the tree; for instance, \(B = 1100 \).

(b)

Consider a source \(X \) with the two-symbol alphabet \(\{a, b\} \), with \(\Pr[X = a] = 2^{-k} \) for some positive integer \(k \). Then

\[
\left\lceil \log_2 \frac{1}{2^{-k}} \right\rceil = k
\]

but the Huffman codewords for the symbols have length 1.

(c)

Consider the case where there are five symbols \(\{a, b, c, d, e\} \). If \(e \) has 2 occurrences, then after combining \((a, b) \) with \(c \), the Huffman code will combine \(d \) with \(e \). But if \(e \) has 3 occurrences, then the algorithm faces a tie between combining \((a, b, c) \) with \(d \), and \(d \) with \(e \); if we choose the former, we again get a maximally unbalanced Huffman tree.

What if there are six symbols? Then \(f \) must have at least 5 occurrences. For seven symbols, the number is 8. For eight symbols, it is 13.
Figure 1: The binary tree given by the Huffman code for the source in Exercise 2.

Let us denote the counts by \(c_1 = c_2 = c_3 = 1 \), \(c_4 = 2 \), \(c_5 = 3 \), \(c_6 = 5 \) and so on. We may assume that \(c_n \leq c_{n+1} \) for all \(n \), because the Huffman code sorts the symbols by frequency.

The key here is that the \(n \)'th symbol must have an occurrence count that is at least the sum of the counts of symbols \(1, 2, \ldots, n-2 \). Why? Because that sum, \(S_{n-2} = \sum_{i=1}^{n-2} c_i \), is compared to the values \(c_{n-1} \) and \(c_n \), and to get a maximally unbalanced tree we must have \(c_n \geq S_{n-2} \) (otherwise, if \(c_n < S_{n-2} \), then the \(n \)'th and \((n-1) \)'th nodes are combined with each other).

As we want to find the minimal values of \(c_n \), the solution to our question is the following:

\[
c_1 = c_2 = c_3 = 1,
\]

\[
c_n = \sum_{i=1}^{n-2} c_i \quad \text{for } n \geq 4.
\]
We now prove by induction that in fact $c_n = c_{n-1} + c_{n-2}$ for $n \geq 4$, that is, we have essentially the Fibonacci sequence! (Except for c_1.) First, note that this is satisfied for $n = 4$. Now,

$$c_{n+1} = \sum_{i=1}^{n-1} c_i = \sum_{i=1}^{n-2} c_i + c_{n-1} = c_n + c_{n-1}$$

so the claim is proven.

Suppose we have m distinct source symbols with the above counts c_1, \ldots, c_m. The symbol a occurs once and there are a total of $\sum_{i=1}^{m} c_i = c_{m+2}$ occurrences, so the probability of a is $1/c_{m+2}$.

When there are m symbols with these counts, the depth of the Huffman tree (equivalently, the codeword length for the symbol a) is $m - 1$. To see why, consider that when we start from the root of the tree, we must separately “decide” against every other symbol before we reach a. A rigorous argument can again be made by induction: the claim holds for $m = 4$, and adding a new node with weight c_{m+1} must increase the depth of the tree by one.

The Shannon codeword length is

$$\left\lceil \log_2 \left(\frac{1}{p(a)} \right) \right\rceil = \left\lceil \log_2 c_{m+2} \right\rceil.$$

Since one can show that the Fibonacci numbers have the closed form\(^1\)

$$c_n = \frac{\varphi^{n-1} - (-\varphi)^{-(n-1)}}{\sqrt{5}}, \quad \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.62,$$

we have that $c_n \approx \varphi^{n-1}/\sqrt{5}$ for large n and hence

$$\left\lceil \log_2 c_{m+2} \right\rceil \leq 1 + \log_2 c_{m+2} \approx 1 + (m + 1) \log_2 \varphi - \log_2 \sqrt{5} \leq 0.7m + 0.6$$

for large m. This is asymptotically smaller than $m - 1$, so the Shannon codeword length of a becomes smaller than the Huffman codeword length. (In fact, one may calculate numerically that the codelengths of a are the same for $m = 2, 3, 4, 5$ and the Shannon codeword length is strictly smaller for $m \geq 6$.)

\(^1\)See e.g. http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html.
Question 5

First, if $\Pr[X = 0] = p = 0.5$, then it obviously suffices to always use exactly one fair coin flip, and the expected number of flips required is 1.

Suppose then that $p \neq 0.5$. Consider the following procedure:

Procedure 1:

1. Set $p_0 \leftarrow p$ and $p_1 \leftarrow 1 - p$.
2. Flip a fair coin. If it comes out heads, then

 (a) if $p_0 \geq p_1$, return 0,
 (b) if $p_0 < p_1$, return 1.
3. If $p_0 \geq p_1$, set $p_0 \leftarrow p_0 - 0.5$.
 Otherwise, set $p_1 \leftarrow p_1 - 0.5$.
4. Normalize p_0 and p_1 so that $p_0 + p_1 = 1$.
5. Go to step 2.

What does this procedure do? For example, consider the case $p_0 = 0.3$. Let’s see what happens when we first enter step 2. Take a look at Figure 2 to get an idea of what’s going on.

![Figure 2: The situation at the first iteration of Procedure 1](image)

We flip a fair coin. If it comes out heads, then we return 1. Otherwise, the situation is inconclusive: we have “consumed” 0.5 worth of probability mass
from the event $X = 1$ but it still has 0.2 probability mass left. Technically speaking, we are decomposing the probability of the event $X = 1$ as

$$
\Pr[X = 1] = \Pr[X = 1 \mid \text{heads}] \Pr[\text{heads}] + \Pr[X = 1 \mid \text{tails}] \Pr[\text{tails}]
$$

$$
= 1 \cdot \frac{1}{2} + \Pr[X = 1 \mid \text{tails}] \cdot \frac{1}{2}
$$

$$
= \frac{1}{2} + \frac{1}{2} \Pr[X = 1 \mid \text{tails}].
$$

So if the fair coin comes up heads (probability 0.5), we are done; if it comes up tails, we continue. The continuation goes on as shown in Figure 3.

This was the intuition behind the procedure. To analyze it mathematically, we first simplify it a little. We don’t really need to keep track of both p_0 and p_1, since $p_1 = 1 - p_0$. In step 2, we return 0 if $p_0 \geq 0.5$ and 1 otherwise. In step 4, the normalization constant is always

$$
\frac{1}{p_0 + p_1 - 0.5} = \frac{1}{p_0 + (1 - p_0) - 0.5} = \frac{1}{0.5} = 2.
$$

Having made these observations, we can rewrite the procedure as follows:

Procedure 2:

1. Flip a fair coin. If it comes out heads, then

 (a) if $p \geq 0.5$, return 0,

 (b) if $p < 0.5$, return 1.

2. If $p \geq 0.5$, set $p \leftarrow 2(p - 0.5) = 2p - 1$. Otherwise, set $p \leftarrow 2p$.

3. Go to step 1.

This looks much simpler! Let us make yet another observation. Recall that

$$
\sum_{i=1}^{\infty} 2^{-i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots = 1.
$$

Therefore, since $0 < p < 1$, we can write

$$
p = \sum_{i=1}^{\infty} b_i 2^{-i}, \quad b_i \in \{0, 1\},
$$
that is, the bits b_i give a binary representation of p. It holds that $p \geq 0.5 \iff b_1 = 1$. And

$$2p = \sum_{i=1}^{\infty} b_i 2^{-i+1} = \begin{cases} \sum_{i=2}^{\infty} b_i 2^{-i+1} & \text{if } b_1 = 0, \\ 1 + \sum_{i=2}^{\infty} b_i 2^{-i+1} & \text{if } b_1 = 1, \end{cases}$$

from which we see that step 2 above simply means that we discard the first bit of p (i.e., we do a one-step bit shift). The steps 1–3 go through the bit representation of p!

The outcome of our procedure is denoted by X. Let T_i be the event that
the procedure terminates at the \(i \)'th coin flip. Then \(\Pr[X = 0 \mid T_i] = 1 \) if and only if, after \(i \) iterations, \(p \geq 0.5 \) or equivalently \(b_i = 1 \). By the above observations, we have

\[
\Pr[X = 0] = \sum_{i=1}^{\infty} \Pr[X = 0 \mid T_i] \Pr[T_i] = \sum_{i=1}^{\infty} b_i 2^{-i} = p
\]

so the procedure indeed produces the desired probability.

The expected number of fair coin flips that are required is

\[
E[\text{n:o of flips needed}] = \sum_{k=1}^{\infty} k \Pr[k \text{ flips needed}] = \sum_{k=1}^{\infty} k 2^{-k}.
\]

To see that this equals 2, consider the partial sums

\[
S_n = \sum_{k=1}^{n} \frac{k}{2^k} = \sum_{k=1}^{n} \frac{1 + (k - 1)}{2^k} = \sum_{k=1}^{n} 2^{-k} + \sum_{k=1}^{n} \frac{k - 1}{2^k} = \sum_{k=1}^{n} 2^{-k} + \frac{1}{2} \sum_{k=1}^{n} \frac{k}{2^k} = \sum_{k=1}^{n} 2^{-k} + \frac{1}{2} S_n.
\]

From the above, we may solve \(S_n = 2 \sum_{k=1}^{n} 2^{-k} \) which tends to 2 as \(n \to \infty \). (Another way to compute the expectation would be to notice that we’re dealing with what’s called the geometric distribution and use its well-known (to some) properties.)