

On learning and inference

- n binary random variables X_{1}, \ldots, X_{n}
- A joint probability distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- Inference:
$>$ compute the conditional probability distribution for the thing you want to know, given all that you know, marginalizing out all that you don't know and don't want to know
$>$ In pricinple exponential, requires $\mathrm{O}\left(2^{\mathrm{n}}\right)$ operations
\Rightarrow Can be simplified if the joint distribution factorizes by indepencence: $P(A, B)=P(A) P(B)$
- Learning:
$>$ learn the model structure: what is (conditionally) independent of what
$>$ learn the parameters defining the "local" distributions
- Supervised learning: construct directly a model for the required conditional distribution, without forming the joint distribution first

Probabilistic reasoning

- n (discrete) random variables X_{1}, \ldots, X_{n}
- joint probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$
- Input: a partial value assignment Ω, $\Omega=\left\langle X_{1}, X_{2}=X_{2}, X_{3}, X_{4}=X_{4}, X_{5}=x_{5}, X_{6}, \ldots, X_{n}\right\rangle$
- Probabilistic reasoning:
$>$ compute $\mathrm{P}(\mathrm{X}=\mathrm{x} \mid \Omega)$ for all X not instantiated in Ω, and for all values of X (marginal distribution).
$>$ find a MAP (maximum a posterior probability) assignment consistent with Ω
- Bayesian networks: a family of probabilistic models and algorithms enabling computationally efficient probabilistic reasoning

Bayesian networks: a billion dollar perspective

"Microsoft's competitive advantage, he [Gates] responded, was its expertise in "Bayesian networks". Ask any other software executive about anything "Bayesian" and you're liable to get a blank stare. Is Gates onto something? Is this alien-sounding technology Microsoft's new secret weapon?"
(Leslie Helms, Los Angeles Times, October 28, 1996.)

Microsoft Pregnancy and Child Care

Microsoft Health Preview
 Pregnancy and Child Care

Questions

the child's abdominal pain?

O
MiledModerate
Dont know

Start Ower Change

Next $:=$ Finish

Wirel gastroenteritis
Psychasametic pain
Lrimaty tract infection
Other

What do Bayesian networks have to offer?

- encoding of the covariation between "input" variables - BN can handle incomplete data sets
- allows one to learn about causal relationships (predictions in the presence of interventions)
- natural way of combining domain knowledge and data as a single model

Three perspectives on dependency modeling:

Model M1:

A and B independent
$P(A, B)=P(A) P(B)$

Model M2:
A and B dependent
$P(A, B)=P(A) P(B \mid A)$
$P(A, B)=P(B) P(A \mid B)$

Are the links causal?

- Not necessarily, but causality makes it easier to determine the conditional probabilities.
- Equivalence class=set of BN structures which can used for representing exactly the same set of probability distributions.

$\mathbf{P}(f l \mathbf{l}, \mathbf{n s})=\mathbf{P}(f l \mathbf{l}) \mathbf{P}(\mathbf{r n} \mid$ flu $)$
$\mathbf{P}(f l u, r n)=\mathbf{P}(\mathbf{r n}) \mathbf{P}(f l u \mid r n)$

Bayesian networks: basics

- A Bayesian network is a model of probabilistic dependencies between the domain variables.
- The model can be described as a list of dependencies, but is is usually more convenient to express them in a graphical form as a directed acyclic network.
- The nodes in the network correspond to the domain variables, and the arcs reveal the underlying dependencies, i.e., the hidden structure of the domain of your data.
- The strengths of the dependencies are modeled as conditional probability distributions (not shown in the graph).

Bayesian networks: the textbook definition

- A Bayesian (belief) network representation for a probability distribution P on a domain (X_{1}, \ldots, X_{n}) is a pair (G, θ), where G is a directed acyclic graph whose nodes correspond to the variables X_{1}, \ldots, X_{n}, and whose topology satisfies the following: each variable X is conditionally independent of all of its non-descendants in G, given its set of parents $p a_{x}$, and no proper subset of pax satisfies this condition. The second component θ is a set consisting of all the conditional probabilities of the form $P\left(X \mid \mathrm{pa}_{\mathrm{x}}\right)$.

```
0={P(+a),P(+b|+a),P(+b|-a), P(+c|+a), P(+c|-a),
P(+d|+b,+c), P(+d|-b,+c),P(+d|+b,-c),P(+d|-b,-c)}
```


A more intuitive description

- From Bayes' rule, it follows that $P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)$

Assume: $P(C \mid A, B)=P(C \mid A)$ and $P(D \mid A, B, C)=P(D \mid B, C)$

And the point is...?

- simple conditional probabilities are easier to determine than the full joint probabilities
- in many domains, the underlying structure corresponds to relatively sparse networks, so only a small number of conditional probabilities is needed

$$
\begin{aligned}
& P(+\mathbf{a},+\mathbf{b},+\mathbf{c},+\mathbf{d})=P(+a) P(+b \mid+a) P(+c \mid+a) P(+d \mid+b,+c) \\
& P(-a,+b,+c,+d)=P(-a) P(+b \mid-a) P(+c \mid-a) P(+d \mid+b,+c) \\
& P(-a,-b,+c,+d)=P(-a) P(-b \mid-a) P(+c \mid-a) P(+d \mid-b,+c) \\
& P(-a,-b,-c,+d)=P(-a) P(-b \mid-a) P(-c \mid-a) P(+d \mid-b,-c) \\
& P(-a,-b,-c,-d)=P(-a) P(-b \mid-a) P(-c \mid-a) P(-d \mid-b,-c) \\
& P(+a,-b,-c,-d)=P(+a) P(-b \mid+a) P(-c \mid+a) P(-d \mid-b,-c)
\end{aligned}
$$

Bayesian Network

Acyclic directed probabilistic independence network

Bayesian Network

$\mathrm{P}(\mathrm{S}=\mathrm{yes} \mid \mathrm{T}=$ none $)=0.0$
$\mathrm{P}(\mathrm{S}=$ nol $\mathrm{T}=$ none $)=1.0$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S}=\text { yes } \mid \mathrm{T}=\text { click })=0.02 \\
& \mathrm{P}(\mathrm{~S}=\text { nol } \mathrm{T}=\text { click })=0.98
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S}=\text { yes } \mid \mathrm{T}=\text { normal })=0.97 \\
& \mathrm{P}(\mathrm{~S}=\text { nol } \mathrm{T}=\text { normal })=0.03
\end{aligned}
$$

Missing Arcs Encode Conditional Independence

$p(G=$ not empty $)=0.995$
$p(G=$ empty $)=0.005$

Defining Bayesian Network Structure

Given an ordering of the variables $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$, the parents of $\boldsymbol{X}_{\boldsymbol{i}}$, denoted Pa_{i}, is a subset of $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{i-1}\right\}$ s.t.

$$
P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid P a_{i}\right)
$$

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a_{i}\right)
$$

A Modular Encoding of a Joint Distribution

Local Distributions

Examples of Local Distributions

- Local distributions can be e.g.,
> Multinomial (child and parents are discrete)

$$
P\left(X_{i}^{k} \mid P a_{i}^{j}, \theta_{i}\right)=\theta_{X_{i}^{k} \mid P a_{i}^{j}}
$$

> Gaussian (child and parents are Gaussian distributions)

$$
p\left(x_{i} \mid \mathbf{p} \mathbf{a}_{i}, \theta_{i}\right)=m_{i}+\sum_{x_{j} \in \mathbf{p a}_{i}} b_{j i} x_{j}+N\left(0, \sigma_{i}^{2}\right)
$$

$>$ Mixture (child and parent either Gaussian or multinomial)

Factor Analysis

Exploratory tool of choice for many applied areas

all Gaussian

Hidden Markov Model

Undirected vs. Directed Models

- Markov network

$$
X \perp Z \mid Y, \neg(x \perp Z \mid \varnothing)
$$

- Bayesian networks

$$
\begin{aligned}
& X \perp Z \mid Y, \quad \neg(x \perp Z \mid \varnothing) \\
& \neg(x \perp Z \mid Y), \quad x \perp Z
\end{aligned}
$$

Explaining Away (selection bias, Berkson's paradox)

If the car doesn't start, hearing the engine turn over makes no fuel more likely.

Explaining away: an example


```
P(A=1)=0.05
P(B=1)=0.05
P(C=1|A=0,B=0)=0.001
P(C=1 | A=1,B=0)=0.95
P(C=1 |A=0,B=1)=0.95
P(C=1 A=1,B=1)=0.99
P(D=1|B=1)=0.99
P(D=1 | B =0)=0.1
```

- Given $C=1$, the probability of $A=1$ is about 51%, and the probability of $B=1$ is also about 51%
- Given $C=1$ and $D=1$, the probability of $A=1$ goes down to 13% while the probability of $B=1$ goes up to 91%

d-Separation (Pearl 1987)

- Theorem (Verma): \boldsymbol{X} and \boldsymbol{Y} are d-separated by $Z \Rightarrow \boldsymbol{X} \perp \boldsymbol{Y} \mid \mathrm{Z}$.
- Theorem (Geiger and Pearl): If \boldsymbol{X} and \boldsymbol{Y} are not d-separated by Z, then there exists an assignment of the probabilities to the BN such that $\neg(\boldsymbol{X} \perp \boldsymbol{Y} \mid \mathrm{Z})$.

d-Separation

- A trail in a BN is a sequence of edges in the corresponding undirected graph that forms a cycle-free path
- A node \boldsymbol{x} is a head-to-head node along a trail if there are two consecutive arcs \boldsymbol{Y}-> X and $X<-Z$ on that trail

d-Separation

- Nodes \boldsymbol{X} and \boldsymbol{Y} are d-connected by nodes Z along a trail from X to \boldsymbol{Y} if
>every head-to-head node along the trail is in Z or has a descendant in Z
> every other node along the trail is not in Z

> Nodes \boldsymbol{X} and \boldsymbol{Y} are d-separated by nodes \mathbf{Z} if they are not d-connected by \mathbf{Z} along any trail from \boldsymbol{X} to \boldsymbol{Y}

Reading out the dependencies

- The Bayesian network on the right represents the following list of dependencies:
$>A$ and B are dependent on each other no matter what we know and what we don't know about C or D (or both).
$>A$ and C are dependent on each other no matter what we know and what we don't know about B or D (or both).
$>\mathrm{B}$ and D are dependent on each other no matter what we know and what we don't know about A or C (or both).
$>C$ and D are dependent on each other no matter what we know and what we don't know about A or B (or both).

$>A$ and D are dependent on each other if we do not know both B and C.
$>B$ and C are dependent on each other if we know D or if we do not know D and also do not know A.

Equivalent Network Structures

Two network structures for domain X are independence equivalent if they encode the same set of conditional independence statements

Example:

Equivalent Network Structures

Verma (1990): Two network structures for U are independence equivalent if and only if
$>$ They have the same skeleton
$>$ They have the same v-structures

Singly-connected BNs

- a singly connected BN = polytree (disregarding the arc directions, no two nodes can be connected with more than one path).

Probabilistic reasoning in singly-connected BNs

$$
\begin{aligned}
& P(X=x \mid E) \propto P\left(E_{X_{-}} \mid X=x\right) P\left(X=x \mid E_{X_{+}}\right) \\
& P\left(E_{X_{-}} \mid X=x\right)=\prod_{Y} P\left(E_{Y-} \mid X=x\right) \\
& P\left(E_{Y-} \mid X=x\right)=\sum_{y} P(Y=y \mid X=x) P\left(E_{Y-} \mid Y=y\right) \\
& P\left(X=x \mid E_{X_{+}}\right)=\sum_{z} P(X=x \mid Z=z) P\left(Z=z \mid E_{Z_{+}}\right)
\end{aligned}
$$

- a computationally efficient messagepassing scheme: time requirement linear in the number of conditional probabilities in θ.

Probabilistic reasoning in multi-connected BNs

- generally not computationally feasible as the problem has been shown to be NP-hard (Cooper 1990, Shimony 1994).
- exact methods:
$>$ clustering
$>$ conditioning
$>$ algebraic methods

- approximative methods:
$>$ stochastic sampling algorithms
$>$ deterministic approximations with bounded accuracy

Print Troubleshooter (W'95)

So let us play....

