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On modeling
In building intelligent systems, statistics and
in the rest of the world ...
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Our motivation: Uncertain 
reasoning 

Computer 
Science

Mathematical
Statistics

Information
Theory



Three Concepts: Probability © Henry Tirri, Petri Myllymäki 1998-2006 5

Do I really need this stuff?
� “Machine learning”
� “Data mining”
� “Intelligent Systems”
� “Neural networks”
� “Pattern recognition”
� “Computational Intelligence”

or
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…and more?
� “Statistics”
� “Robotics”
� “Expert system design”
� “Medical informatics”
� “User interface design”
� “Artificial life” (Evolutionary 
computation)
� ….
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Modeling framework

Problem

Prediction

Modeling

Decision making
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What does this mean?
� Problem: there is a need to model some part of the universe and make decisions based on the model
� Modeling: build the best model possible from a priori knowledge and data available
� Prediction: use the model to predict properties of interest
� Decision making: decide actions based on the predictions
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For example
� Problem: online troubleshooting of software/hardware 
� Modeling: build a latent variable (Bayes) model of the problems user encounters based  on knowledge about the software and symptom data
� Prediction: use the model to predict the underlying problem given symptoms
� Decision making: propose actions to remove the problem (or to find more symptoms)
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Microsoft Technical support
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Bayesian email spam filters
� SpamBayes, OPFile, Outclass, bayespam, 
bogofilter, ifile, PASP, spamoracle, Spam 
Assassin Annoyance Filter, BSpam, Spam Bully, 
Death2Spam, InBoxer, …
� Software: 

�http://spambayes.sourceforge.net/related.html
� Background:

�http://spambayes.sourceforge.net/background.html
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Real questions are ...
� Infinite number of models - what models do we consider? 

�Model is always chosen from a set of possible models!
� How do we compare models (i.e., measure that one model is better than another one) given some data?
� How do we find good models?
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…and more
� How do we use the models to predict
unobserved quantities of interest?
�What actions do we choose given the 
predictions?
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General “rational agent” framework
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Choice of models

� Simple models vs. complex models
� Linear models vs. non-linear models
� Parametric models vs. non-parametric 
models
� Flat models vs. structural models
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Paradise lost
� What is simple and what is complex?*� � ��� ��� � � 	 ��
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* John. L. Casti, Complexification
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What is complex?

� what is complex is a totally nontrivial question
� one intuition: a complex model has more effective parameters

�example: 100 factor model of IQ is more complex than 10 factor model!
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The Occam’s razor principle
� The problem:G H<I J K LM N OQP M R S T M U I V V I W O R N XM Y J M RZ M [�\ ]_^ ` ^ a^ ] ]
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� “Of two competing hypotheses both conforming to our observations, choose the simpler one.”
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Occam’s Razor in Modeling
� there is a trade-off between the model 
complexity and fit to the data

# of car accidents

age

too simple

too complex
Occam
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� interpretation: they are easier to understand
� computation: predictions are typically easier to 
compute (not necessarily!)
� universality: they can be applied in more 
domains (more accurate predictions)
� “models should be only as complex as the data 
justifies”
� Bayesian model selection: automatic Occam’s 
razor for model complexity regularization

Simpler models are better than 
complex models
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The source of great confusion
� Descriptive models (“Statistical modeling”)

�describe objects (e.g., data) as they are
�typically exploratory structures

� Predictive models (“Predictive inference”)
�models that are able to predict unknown 
objects (e.g., future data)

�models of the underlying process



Three Concepts: Probability © Henry Tirri, Petri Myllymäki 1998-2006 22

Some viewpoints
� “prediction is our business”
� why the best fit to data is not the best 
predictor
�data can be erroneous - perfect fit is too 
“specialized” and models the errors also!

�a sample can only “identify” up to a certain level 
of complexity 

� intuitive goal: minimize model complexity + 
prediction error - it keeps you honest!
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Alternatives

� Probabilistic inference
�Statistical inference
�Bayesian inference

� Fuzzy inference
� Dempster-Shafer inference
� Non-monotonic logic
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All models have probabilistic 
counterparts

Non-probabilistic models with error function ER(y|H,x)
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