Three concepts: Probability Spring 2006

Petri Myllymäki

Complex Systems Computation Group Department of Computer Science University of Helsinki, Finland
http://www.cs.helsinki.fi/group/cosco/Teaching/Probability/

Three concepts

Compression, coding, modeling

On modeling

In building intelligent systems, statistics and in the rest of the world ...

Our motivation: Uncertain reasoning

Do I really need this stuff?

- "Machine learning"
- "Data mining"
- "Intelligent Systems"
- "Neural networks"

- "Pattern recognition"

Or

- "Computational Intelligence"

... and more?

- "Statistics"
- "Robotics"
- "Expert system design"
- "Medical informatics"
- "User interface design"
" "Artificial life" (Evolutionary computation)

Modeling framework

What does this mean?

- Problem: there is a need to model some part of the universe and make decisions based on the model
- Modeling: build the best model possible from a priori knowledge and data available
- Prediction: use the model to predict properties of interest
- Decision making: decide actions based on the predictions

For example

- Problem: online troubleshooting of software/hardware
- Modeling: build a latent variable (Bayes) model of the problems user encounters based on knowledge about the software and symptom data
- Prediction: use the model to predict the underlying problem given symptoms
- Decision making: propose actions to remove the problem (or to find more symptoms)

Microsoft Technical support

Bayesian email spam filters

- SpamBayes, OPFile, Outclass, bayespam, bogofilter, ifile, PASP, spamoracle, Spam Assassin Annoyance Filter, BSpam, Spam Bully, Death2Spam, InBoxer, ...
- Software:
>http://spambayes.sourceforge.net/related.html
- Background:
>http://spambayes.sourceforge.net/background.html

Real questions are ...

- Infinite number of models - what models do we consider?
- Model is always chosen from a set of possible models!
- How do we compare models (i.e., measure that one model is better than another one) given some data?
- How do we find good models?

...and more

- How do we use the models to predict unobserved quantities of interest?
- What actions do we choose given the predictions?

General "rational agent" framework

Choice of models

- Simple models vs. complex models
- Linear models vs. non-linear models
- Parametric models vs. non-parametric models
- Flat models vs. structural models

Paradise lost

- What is simple and what is complex?*
> The Catastrophic
\checkmark Intuition: small, gradual changes in causes give rise to small, gradual changes in effects
\Rightarrow The Chaotic
\checkmark Intuition: Deterministic rules of behavior give rise to completely predictable events
> The Lawless
\checkmark Intuition: All real-world truths are logical outcome of following a set of rules
- The Irreducible
\checkmark Intuition: Complicated systems can always be understood by breaking them down into simpler parts
$>$ The Emergent
\checkmark Intuition: Surprising behavior results only from complicated, hard-tounderstand interactions among a system's component parts

\author{

* John. L. Casti, Complexification
}

What is complex?

- what is complex is a totally nontrivial question
- one intuition: a complex model has more effective parameters
> example: 100 factor model of IQ is more complex than 10 factor model!

$$
P(D \mid M)=\frac{(l-1)!}{(N+l-1)!} \prod_{k=1}^{l}\left|c_{k}\right|!\prod_{j=1}^{m} \prod_{k=1}^{l}\left(\frac{n_{j}-1!}{\left(c_{k} \mid+n_{j}-1\right)!} \prod_{i=1}^{n_{i}} F_{k}\left(a_{j i}\right)!\right)
$$

The Occam's razor principle

- The problem:
$>$ You are given the following sequence: $-1,3,7,11$
- Question: What are the two next numbers?
- Solution 1:
> Answer: 15 and 19
$>$ Explanation: add 4 to the previous number
- Solution 2:

> Answer: -19.9 and 1043.8
- Explanation: if the previous number is x, the next one is $-x^{3} / 11+9 / 11 x^{2}+23 / 11$
- "Of two competing hypotheses both conforming to our observations, choose the simpler one."

Occam's Razor in Modeling

- there is a trade-off between the model complexity and fit to the data
\# of car accidents

Simpler models are better than complex models

- interpretation: they are easier to understand
- computation: predictions are typically easier to compute (not necessarily!)
- universality: they can be applied in more domains (more accurate predictions)
- "models should be only as complex as the data justifies"
- Bayesian model selection: automatic Occam's razor for model complexity regularization

The source of great confusion

- Descriptive models ("Statistical modeling")
$>$ describe objects (e.g., data) as they are
>typically exploratory structures
- Predictive models ("Predictive inference")
$>$ models that are able to predict unknown objects (e.g., future data)
$>$ models of the underlying process

Some viewpoints

- "prediction is our business"
- why the best fit to data is not the best predictor
$>$ data can be erroneous - perfect fit is too "specialized" and models the errors also!
>a sample can only "identify" up to a certain level of complexity
- intuitive goal: minimize model complexity prediction error - it keeps you honest!

Alternatives

- Probabilistic inference
>Statistical inference - Bayesian inference
- Fuzzy inference

- Dempster-Shafer inference
- Non-monotonic logic

All models have probabilistic counterparts

Probability distributions

(Shannon-Fano) codes

