Probability as a

Personcil probablity: most OF LIFE'S EVENTS ARE NOT REPEATABLE. PERSONAL PROBABILITY IS AN INDIVIDUAL'S PERSONAL ASSESSMENT OF AN OUTCOME'S LIKELIHOOD. IF A GAMBLER BELIEVES THAT A HORSE HAS MORE THAN A 50% CHANCE OF WINNING, HE'LL TAKE AN EVEN BET ON THAT HORSE.

AN OBJECTIVIST USES EITHER THE CLASSICAL OR FREQUENCY DEFINITION OF PROBABILITY. A SUBJECTIVIST OR BAYESIAN APPLIES FORMAL LAWS OF CHANCE TO HIS OWN, OR YOUR, PERSONAL PROBABILITIES.

Probabilities are to be interpreted

Dictionary definition:
probability $=$ chance $=$ likelihood $=$ probability

Numerical measures of belief

$>$ Belief in a proposition, f, can be measured in terms of a number between 0 (definitely false) and 1 (definitely true) this is the probability of f
$>f$ has a probability between 0 and 1 , doesn't mean f is true to some degree, but means that you are ignorant of its truth value. Probability is a measure of your ignorance

Random Variables

$>$ A random variable is a term in a language that can take one of a number of different values
$>\operatorname{dom}(x)$, the domain of a variable, is the set of values x can take
$>$ a tuple of random variables $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a complex random variable with domain $\operatorname{dom}\left(x_{1}\right) \times \ldots \times \operatorname{dom}\left(x_{n}\right)$
$>$ a proposition is a Boolean formula made from assignments of values to variables

Possible world semantics

$>$ A possible world specifies an assignment of one value to each random variable

$$
w \mid=x=v
$$

means variable x is assigned value v in world w
$>$ logical connectives have their standard meaning

$$
\begin{aligned}
& w \mid=\alpha \wedge \beta \text { if } w \mid=\alpha \text { and } w \mid=\beta \\
& w \mid=\alpha \vee \beta \text { if } w \mid=\alpha \text { or } w \mid=\beta \\
& w \mid=\neg \alpha \text { if } w \mid \neq \alpha
\end{aligned}
$$

Semantics of probability

$>$ For a finite number of variables with finite domains:

- define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1 . The measure specifies how much you think the world w is like the real world.
- The probability of a proposition f is defined by

$$
P(f)=\sum_{\omega \mid=f} \mu(\omega)
$$

Axioms of probability

$>$ Axiom 1. $P(f)=P(g)$ if $f \leftrightarrow g$ is a tautology. That is, logically equivalent formulae have the same probability.
\Rightarrow Axiom $2.0 \leq P(f)$ for any formula f.
$>$ Axiom 3. $P(\tau)=1$ if τ is a tautology.
$>$ Axiom 4. $P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.

These axioms are sound and complete with respect to the semantics

Conditioning

$>$ Specifies how to revise beliefs based on new information
> Building a probabilistic model starts by taking all background information into account. This gives the prior probability.
$>$ All other information must be conditioned on.
$>$ If evidence e is all the info obtained subsequently, the conditional probability $P(h / e)$ of h given e is the posterior probability of h

Semantics of conditional probability

$>$ Evidence e rules out possible worlds incompatible with e.
$>$ Evidence e induces a new measure, $\mu_{e!}$ over possible worlds

$$
\mu_{e}= \begin{cases}\frac{1}{P(e)} \times \mu(\omega) & \text { if } \omega \mid=e \\ 0 & \text { if } \omega \mid \neq e\end{cases}
$$

$>$ The conditional probability of formula h given evidence e is

$$
P(h \mid e)=\sum_{\omega \mid=h} \mu_{e}(w)=\frac{P(h \wedge e)}{P(e)}
$$

Properties of conditional probabilities

$>$ Chain rule

$$
\begin{aligned}
& P\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right) \\
& =P\left(f_{1}\right) \times P\left(f_{2} \mid f_{1}\right) \times P\left(f_{3} \mid f_{1} \wedge f_{2}\right) \\
& \times \ldots \times P\left(f_{n} \mid f_{1} \wedge \ldots \wedge f_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(f_{i} \mid f_{1} \wedge \ldots \wedge f_{i-1}\right)
\end{aligned}
$$

Law of total probability

$>$ use a weighted average of conditional probabilities to calculate a probability
Propositions W,J

$$
\left.\begin{array}{l}
W=(W \cap J) \cup(W \cap(\sim J)) \text { (disjointness) } \\
P(W)=P(W \cap J)+P(W \cap(\sim J)) \\
P(W \cap J)=P(W \mid J) P(J) \\
P(W \cap(\sim J))=P(W \mid \sim J) P(\sim J)
\end{array}\right\} \Rightarrow
$$

Beating classifiers

> in LEE-97 Cup your favorite classifier program YFC is tested against decision tree classifier (DTC) and Naïve Bayes classifier (NBC).
$>$ from experience probability of YFC performing better than DTC is $7 / 10$ but against NBC only $2 / 10$
$>$ you assess the probability of YFC facing DTC to be $1 / 4$ (and thus $P(N B C)$ to be 3/4)
$>$ How likely is it that your YFC is better than your next competitor?

Beating classifiers

Propositions J = against DTC, ~ J = against NBC, $B=$ beating
$P(B \mid J)=7 / 10, P(B \mid \sim J)=2 / 10$
$P(J)=1 / 4, P(\sim J)=3 / 4$
By the law of total probability
$P(B)=\frac{1}{4} \cdot \frac{7}{10}+\frac{3}{4} \cdot \frac{2}{10}=\frac{13}{40}=.325$

Bayes Rule

$>$ let us reverse the previous situation: assuming same probability assignments, you tell me that YFC outperformed the competitor. Which classifier (DTC or NBC) did you compete with?

Bayes Rule

$$
P(J \mid W)=\frac{P(W \cap J)}{P(W)}
$$

from chain rule we have

$$
P(J \mid W)=\frac{P(W \mid J) P(J)}{P(W)}
$$

using the law of total probability we have

$$
P(J \mid W)=\frac{P(W \mid J) P(J)}{P(W \mid J) P(J)+P(W \mid \sim J) P(\sim J)}
$$

In the example ...

Propositions J = against DTC, $\sim \mathrm{J}=$ against NBC, $B=$ beating
$P(B \mid J)=7 / 10, P(B \mid \sim J)=2 / 10$
$P(J)=1 / 4, P(\sim J)=3 / 4$
By Bayes Rule

$$
P(J \mid B)=\frac{(7 / 10)(1 / 4)}{(7 / 10)(1 / 4)+(2 / 10)(3 / 4)}=\frac{7}{13}
$$

Side note

$>$ Note that $\mathrm{P}(\mathrm{B} \mid \mathrm{J})+\mathrm{P}(\mathrm{B} \mid \sim \mathrm{J})$ is not necessarily 1 , but $\mathrm{P}(\mathrm{B} \mid \mathrm{J})$ $+P(\sim B \mid J)$ is!
$>$ Why?

- Intuitive argument
$\sqrt{ }$ If you now that you will surely beat $\operatorname{DTC}(P(B \mid J)=1)$, this does NOT mean that you will surely loose against NBC, right?
- Semantic argument:
$\sqrt{ }$ if you condition on two different things, you obtain two different measures on the possible worlds \Rightarrow two different distributions
$>$ Mnemonic rule of thumb:
- Given P(A | B):
$\sqrt{ }$ If you sum over the left hand side (A), the result is 1
$\sqrt{ }$ If you sum over the right hand side (B), the result can be anything $\sqrt{ }$ If you sum over the values of B weighted by $P(B)$, the result is $P(A)$

Marginalization

	B	C	$P(B, C)$	$P(A=1) ?$	$P(A=1, B=1) ?$	$P(B=1 \mid A=1) ?$
1	1	1	0,10	X	X	
1	0	0	0,20	X		
1	1	0	0,05	X	X	
1	0	1	0,15	X		
0	1	1	0,30			
0	0	0	0,05			
0	1	0	0,10		$0,15 / 0,50=0,30$	
0	0	1	0,05			

Probabilistic inference $=$ marginalization

$>\mathrm{H}$: something you do not know and want to know
$>$ U: everything you do not know and do not need to know ("nuisance")
$>$ I: background knowledge
> D: observed data

$$
P(H \mid D, I)=\sum_{U} P(H \mid D, I, U) P(U \mid D, I)
$$

Another version of BR

$$
P(J \mid W)=\frac{P(W \mid J) P(J)}{P(W \mid J) P(J)+P(W \mid \sim J) P(\sim J)}
$$

divide by the numerator

$$
P(J \mid W)=\frac{1}{1+\frac{P(W \mid \sim J)}{P(W \mid J)} \frac{P(\sim J)}{P(J)}}
$$

If we express $P(\sim J \mid W)$ with this expression, we get

$$
\frac{P(\sim J \mid W)}{P(J \mid W)}=\frac{P(W \mid \sim J)}{P(W \mid J)} \frac{P(\sim J)}{P(J)}
$$

Bayes Rule in Terms of Odds

Bayes factor in favor of J (likelihood)

$$
\frac{P(J \mid W)}{P(\sim J \mid W)}=\frac{P(W \mid J)}{P(W \mid \sim J)} \frac{P(J)}{P(\sim J)}
$$

Posterior odds in favor of J

Example: Which die?

$>$ two dice: 4-sider and 20-sider
$>$ each side equally likely (for each die)
> $\mathrm{F}=$ "pick 4-sider", $\mathrm{T}=\sim \mathrm{F}=$ "pick 20-sider"
$>$ for you $P(F)=P(\sim F)=1 / 2$
$>$ I roll the die picked. The result is 3 . Which die did I pick?

Example: Which die?

likelihoods are $P(3 \mid F)=1 / 4$ and $P(3 \mid T)=1 / 20$ Bayes's rule says

$$
\begin{aligned}
P(F \mid 3) & =\frac{P(3 \mid F) P(F)}{P(3 \mid F) P(F)+P(3 \mid T) P(T)} \\
& =\frac{(1 / 4)(1 / 2)}{(1 / 4)(1 / 2)+(1 / 20)(1 / 2)}=\frac{5}{6}
\end{aligned}
$$

The Bayes factor in favor of F

$$
\frac{P(3 \mid F)}{P(3 \mid T)}=\frac{1 / 4}{1 / 20}=5
$$

