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Probability as a 
measure of belief
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Probabilities are to be interpreted

Dictionary definition:
probability = chance = likelihood = probability ?
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Numerical measures of belief

� Belief in a proposition, f, can be measured in terms of a 
number between 0 (definitely false) and 1 (definitely true) —
this is the probability of f

� f has a probability between 0 and 1, doesn’t mean f is true to 
some degree, but means that you are ignorant of its truth 
value. Probability is a measure of your ignorance
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Random Variables
� A random variable is a term in a language that can take one 

of a number of different values
� dom(x), the domain of a variable, is the set of values x can 

take
� a tuple of random variables <x �,…, x �> is a complex random 

variable with domain dom(x �) ×... × dom(x �)
� a proposition is a Boolean formula made from assignments of 

values to variables
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Possible world semantics
� A possible world specifies an assignment of one value to each 

random variable

means variable x is assigned value v in world w
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� logical connectives have their standard meaning
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Semantics of probability
� For a finite number of variables with finite domains:
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Axioms of probability
� Axiom 1. P(f) = P(g) if f ↔ g is a tautology. That is, logically 

equivalent formulae have the same probability.
� Axiom 2. 0 ≤ P(f) for any formula f.
� Axiom 3. P(τ) = 1 if τ is a tautology.
� Axiom 4. P(f ∨ g) = P(f) + P(g) if ¬(f ∧ g) is a tautology.

These axioms are sound and complete
with respect to the semantics
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Conditioning
� Specifies how to revise beliefs based on new information
� Building a probabilistic model starts by taking all background 

information into account. This gives the prior probability.
� All other information must be conditioned on.
� If evidence e is all the info obtained subsequently, the 

conditional probability P(h|e) of h given e is the posterior 
probability of h
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Semantics of conditional 
probability
� Evidence e rules out possible worlds incompatible with e.
� Evidence e induces a new measure, µ #, over possible worlds
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Properties of conditional 
probabilities
� Chain rule
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Law of total probability
� use a weighted average of conditional probabilities to 

calculate a probability
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Beating classifiers
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Beating classifiers
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Bayes Rule
� let us reverse the previous situation: assuming same 

probability assignments, you tell me that YFC outperformed 
the competitor. Which classifier (DTC or NBC) did you 
compete with?
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Bayes Rule
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In the example ...
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Side note
� Note that P(B |J) + P(B | ~J) is not necessarily 1, but P(B | J)

+ P(~B | J) is!
� Why?
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� Mnemonic rule of thumb:
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Marginalization

0,15/0,50 = 0,300,150,501,0
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Probabilistic inference = 
marginalization

� H: something you do not know and want to know
� U: everything you do not know and do not need to know 

(“nuisance”)
� I: background knowledge
� D: observed data
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Another version of BR
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Bayes Rule in Terms of Odds
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Example: Which die?
� two dice: 4-sider and 20-sider
� each side equally likely (for each die)
� F = “pick 4-sider”, T=~F=“pick 20-sider”
� for you P(F)=P(~F)=1/2
� I roll the die picked. The result is 3. Which die did I pick?
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Example: Which die?
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