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Model for population

� � �� ��� �� � 	 
� 
� ���  �� �� � � ��  � � � � �  � � � �� � � � �  � �� � � � � � �� �� �

� � � � 	 � � � � �  �� 
� � � � � �� � � � � �� � � �  �� � � 
� 	 � �� � �� � ��� � � � �� 	 � � �

 �� �� 	 �� � � �� 
� � � � �� � � �� � � 	� � � 	 ��� �  �� �� �� �

� � 
� 	  �� � � � 	 �� �� � � 	 � �� � ��  � � �� ��� � � � �� � � �� � � � � 
�  �� � � �

� 
 	� �� � � � � � � � � � � 
�  �� � � � � � �  �� �� � � � 
 	� �� � � � �  �� � � �  �� � � � � � � � � � �

�� �� � � � � �

� � � � � � � � 
�  ��� � � � � � � �� �� � � � 
� 	  �� � ��� 	 � � � 	� � ! � �� � � � � � �� � �  � " #

$ � �� � � 	� �� �&%  	� �  �� �  � � � � �  � � � '
“Testing a null hypothesis means finding
its posterior probability”
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Steps in Bayesian inference
� Specify a set of models
� Assign a prior probability to each model
� Collect data
� Calculate the likelihood  P(data|model) of each model
� Use Bayes’ rule to calculate the posterior probabilities 
P(model | data)

� Draw inferences (e.g., predict the next observation)
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Example
� You are installing WLAN-cards for different machines. You get 

the WLAN-cards from the same manufacturer, and some of 
them are faulty.

� We are asking the question: “Is the next WLAN-card we are 
installing going to work?”

� We are allowed to have background knowledge of these 
cards (they have been reliable/unreliable in the past, the 
manufacturing quality has gone up/down etc.)
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Assessing models
� Let A = “The next WLAN-card is not faulty”, and B=~A
� A proportion model can be understood  as a bowl with 

labeled balls (A,B)
� each model M(θ) is characterized by the number of A 

balls, θ is the proportion (Obs! θ is discrete, i.e., 
θ∈{0,0.1,0.2,…,1})
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Population models
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Priors and models
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Prior distribution
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Predictive probability
� What is the probability that the next WLAN-card is not faulty?
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Principle of Model averaging
� The previous prediction method is called model averaging, 

i.e., the uncertainty about the model is taken into account by 
weighting the predictions of the different alternative models 
M(θ)

)|)(()),(|()|( MMPMMdPMdP i
i
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“Mean or average” model
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Enter more data ...
� Assume that I have installed three WLAN-cards: first was 

non-faulty, the two latter ones faulty
� what are the updated (posterior) probabilities for the models 

M(θ)?
� Enter Bayes, for example
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Calculating model likelihoods
� We assume that the observations are independent given any 

particular model M(θ)
� P(ABB | M(0.6)) = 0.6 * 0.4 * 0.4 = 0.096
� This is repeated for each model M(θ)

To calculate the likelihood of a model, multiply the
probabilities of the individual observations given the model
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Likelihood histogram P(D|M(θ))
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Posterior distribution P(M(θ)|D)
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Posterior = likelihood * prior
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Predictive probability with 
data D
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� with data D the prediction is based on averaging over the 
models M(θ) weighting by the posterior (instead of the prior 
used earlier) probability of the models
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How did the probabilities
change?
� the posterior distribution is changed: the probability that in 
general there are more functioning WLAN-cards than 
malfunctioning cards is down from the prior 65% to 47%

� the predictive probability P(A|D) that the next (fourth) WLAN-
card is OK came down from the 60% to 45060/86160 = 52% 
(the change is not great because the data set is small)
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Densities for proportions
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Many models
� a richer set of models allows more precise proportion 

estimates, but comes with a cost: the amount of calculations 
necessary increase proportionally

� we can move to consider infinite number of models() *+ , -. /) 0 θ 132 4 . 5 *6 . 1 4 7 . 4 7 ,) 1 4 7) 89 * 0: 8. - ;<>= ? @
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Beta Densities

� using densities means that we no longer add probabilities, 
but calculate areas

� to represent “infinite bar charts” we use curves that 
approximate the heights of bars

� suppose θ is the success proportion and values a,b≥0. 
Density P(θ) = Beta(a,b) if: 

P(θ) ∝ θ a-1(1- θ)b-1
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Updating rule for beta densities
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� assume that you observe s successes and f failures
� in calculating the likelihood whenever s multiply by θ; 

whenever f multiply by (1- θ). Thus the likelihood is 
of form

� posterior = prior × likelihood
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Updating rule for beta densities 
� a failure changes the density shape parameter b; a success 

parameter a

Updating rule for Beta Densities
When the prior is Beta(a,b), and the 
sufficient statistics of the observed data
is s,f, the posterior density is 
Beta(a+s,b+f)
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Predictive probability for 
beta densities

� Predictive probability of success (A) is 
P(A | a,b) = ∫ P(A | θ, a,b) P(θ | a,b) dθ

= ∫ θ P(θ | a,b) dθ =E(θ | a,b) = a/(a+b).
� Hence, one can use a single model θ**** which is the mean of the 

Beta(a,b) density: θ**** = a/(a+b)
� E.g.: flip a coin 10 times, observe 7 heads (“success”). 

Assuming a uniform prior Beta(1,1), the posterior for the θ
becomes Beta(8,4), and hence the predictive probability of 
heads is 8/12=2/3.

� Also known as Laplace’s rule of succession.
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Finding beta priors
� assess the probability of success on the first observation 

(e.g., r(1) = 0.7)
� assume that the first observation was success. Given this 

information assess the probability of the second success 
(e.g., r(2) = 0.75)

� So which beta density we choose, i.e., which a and b?
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Finding beta priors
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“Equivalent sample size”
� predictive probabilities change less radically when a+b is 

large
� interpretation: before formulating prior one has experience of 

previous observations - thus with a+b one can indicate 
confidence measured in observations

� called “prior sample size” or “equivalent sample size”
� Beta(1,1) is the uniform prior
� Beta(0.5,0.5) is the Jeffreys prior
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Another example
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Equivalent sample size and the 
Bayes Factor
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A slightly modified example

Ô Õ3Ö× × ØÙ Ö Ú3Û ÜÝ Þß Ú3à á× â Ö ã× áäå á æèç éê é ë á Ø ì× Ø Û ì é Þí

ß Ø Ú î× ï

Ô ð�ñ ò Ö ß ë á× Ú× ðôó õ ß ë áÙ Ö ÚÛ Ú× ö Ø Ú ä ÷ø ÷θ=0.5) = 1)

Ô ð�ñ ò Ö ß ë á× Ú× ðúù õ ß ë áÙ Ö ÚÛ Ú× ã Ú Ø× á ì

Ô ûß Øß Ú× ß ÚÙ × õ

üý þ�ÿ ��� � � ��� ÿ �
	 �� �� �

ü �
� ��� � � � � �� � � ��� �� � � �� �� � � �� �
 � � ! �� � �� � �� "� � � !# $

Ô % Øñ á× õ
ü& ÿ ' (	 � 	 	 � )ÿ �* + �
, +� ÿ.- /- 0ÿ ' � 1 � � � 2

ü3 , )* � 'ÿ ' þ�ÿ 0 �4 ÿ 	 5 �6 ', +
250

11

0

1

2
1

),|(),,|(

)|(
)|( ∫=

θθθ daHPaHDP

HDP
HDP



Three Concepts: Probability © Henry Tirri, Petri Myllymäki 1998-2006 109

Equivalent sample size and the 
Bayes Factor (modified example)
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Lessons learned
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On Bayes factor and Occam’s razor
� The marginal likelihood (the “evidence”) P(D | H) yields a 
probability distribution (or density) over all the possible data
sets D.

� Complex models can predict well many different data sets, so 
they need to spread the probability mass over a wide region 
of models
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