

Model for population

- A model for population can be thought as a bowl with balls labeled according to the possible outcomes of the experiment. The numbers of the various types of balls characterize the model
- a particular model or a subset of models is called a hypothesis
- probability of a hypothesis H is the sum of probabilities of the individual models in H
- a null hypothesis is a model of particular interest-usually one with NO (difference, treatment effect etc.)
"Testing a null hypothesis means finding its posterior probability"

Steps in Bayesian inference

- Specify a set of models
- Assign a prior probability to each model
- Collect data
- Calculate the likelihood P(data|model) of each model
- Use Bayes' rule to calculate the posterior probabilities P(model \| data)
- Draw inferences (e.g., predict the next observation)

Example

- You are installing WLAN-cards for different machines. You get the WLAN-cards from the same manufacturer, and some of them are faulty.
- We are asking the question: "Is the next WLAN-card we are installing going to work?"
- We are allowed to have background knowledge of these cards (they have been reliable/unreliable in the past, the manufacturing quality has gone up/down etc.)

Assessing models

- Let $\mathrm{A}=$ "The next WLAN-card is not faulty", and $B=\sim A$
- A proportion model can be understood as a bowl with labeled balls (A, B)
- each model $M(\theta)$ is characterized by the number of A balls, θ is the proportion (Obs! θ is discrete, i.e., $\theta \in\{0,0.1,0.2, \ldots, 1\})$

Population models

Priors and models

Prior distribution

Predictive probability

- What is the probability that the next WLAN-card is not faulty?

$$
\begin{aligned}
P(A)= & P(A \mid M(0)) P(M(0))+P(A \mid M(0.1)) P(M(0.1)) \\
& +\ldots+\mathrm{P}(\mathrm{~A} \mid \mathrm{M}(1)) \mathrm{P}(\mathrm{M}(1)) \\
= & 0+0.002+0.006+0.015+\ldots 0=0.598
\end{aligned}
$$

Principle of Model averaging

- The previous prediction method is called model averaging, i.e., the uncertainty about the model is taken into account by weighting the predictions of the different alternative models M(θ)

$$
P(d \mid M)=\sum P\left(d \mid M\left(\theta_{i}\right), M\right) P\left(M\left(\theta_{i}\right) \mid M\right)
$$

"Mean or average" model

Enter more data ...

- Assume that I have installed three WLAN-cards: first was non-faulty, the two latter ones faulty
- what are the updated (posterior) probabilities for the models $\mathrm{M}(\theta)$?
- Enter Bayes, for example

$$
P(M(0.6) \mid D)=\frac{P(D \mid M(0.6)) P(M(0.6))}{P(D)}
$$

Calculating model likelihoods

- We assume that the observations are independent given any particular model $M(\theta)$
- $P(A B B \mid M(0.6))=0.6 * 0.4 * 0.4=0.096$
- This is repeated for each model $M(\theta)$

To calculate the likelihood of a model, multiply the probabilities of the individual observations given the model

Likelihood histogram $\mathbf{P}(\mathrm{D} \mid \mathrm{M}(\theta))$

Posterior distribution P(M(θ)|D)

Posterior = likelihood * prior

Predictive probability with data D

- with data D the prediction is based on averaging over the models $M(\theta)$ weighting by the posterior (instead of the prior used earlier) probability of the models

$$
P(A \mid D)=\sum_{i \in\{0,0.1,0, \ldots, 1\}} P(M(i) \mid D) P(A \mid M(i))
$$

How did the probabilities change?

- the posterior distribution is changed: the probability that in general there are more functioning WLAN-cards than malfunctioning cards is down from the prior 65\% to 47\%
- the predictive probability $\mathrm{P}(\mathrm{A} \mid \mathrm{D})$ that the next (fourth) WLANcard is OK came down from the 60% to $45060 / 86160=52 \%$ (the change is not great because the data set is small)

Densities for proportions

Many models

- a richer set of models allows more precise proportion estimates, but comes with a cost: the amount of calculations necessary increase proportionally
- we can move to consider infinite number of models
$>$ each model θ is now a point on the interval from $[0,1]$
$>$ we get a "smoothed" bar chart called a density $\mathrm{P}(\theta)$
$>\int \mathrm{P}(\theta) d \theta=1$
$>$ only collections of models can have a probability >0

Beta Densities

- using densities means that we no longer add probabilities, but calculate areas
- to represent "infinite bar charts" we use curves that approximate the heights of bars
- suppose θ is the success proportion and values $\mathrm{a}, \mathrm{b} \geq 0$. Density $\mathrm{P}(\theta)=\operatorname{Beta}(\mathrm{a}, \mathrm{b})$ if:

$$
P(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

Updating rule for beta densities

- prior is of form

$$
\theta^{a-1}(1-\theta)^{b-1}
$$

- assume that you observe s successes and f failures
- in calculating the likelihood whenever s multiply by θ; whenever f multiply by ($1-\theta$). Thus the likelihood is of form

$$
\theta^{s}(1-\theta)^{f}
$$

- posterior $=$ prior \times likelihood

$$
\boldsymbol{\theta}^{a-1}(1-\theta)^{b-1} \boldsymbol{\theta}^{s}(1-\theta)^{f}=\boldsymbol{\theta}^{a+s-1}(1-\boldsymbol{\theta})^{b+f-1}
$$

Updating rule for beta densities

- a failure changes the density shape parameter b; a success parameter a

> Updating rule for Beta Densities
> When the prior is Beta(a, b), and the sufficient statistics of the observed data is s, f, the posterior density is Beta(a+s,b+f)

Predictive probability for beta densities

- Predictive probability of success (A) is

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \mid \mathrm{a}, \mathrm{~b}) & =\int \mathrm{P}(\mathrm{~A} \mid \theta, \mathrm{a}, \mathrm{~b}) \mathrm{P}(\theta \mid \mathrm{a}, \mathrm{~b}) \mathrm{d} \theta \\
& =\int \theta \mathrm{P}(\theta \mid \mathrm{a}, \mathrm{~b}) \mathrm{d} \theta=\mathcal{E}(\theta \mid a, b)=a /(a+b) .
\end{aligned}
$$

- Hence, one can use a single model θ^{*} which is the mean of the Beta($a, b)$ density: $\theta^{*}=a /(a+b)$
- E.g.: flip a coin 10 times, observe 7 heads ("success"). Assuming a uniform prior Beta(1,1), the posterior for the θ becomes $\operatorname{Beta}(8,4)$, and hence the predictive probability of heads is $8 / 12=2 / 3$.
- Also known as Laplace's rule of succession.

Finding beta priors

- assess the probability of success on the first observation (e.g., r(1) = 0.7)
- assume that the first observation was success. Given this information assess the probability of the second success (e.g., r(2) $=0.75$)
- So which beta density we choose, i.e., which a and b?

Finding beta priors

$$
\begin{aligned}
& r(1)=\frac{a}{a+b} \text { and } \\
& r(2)=\frac{a+1}{a+b+1} \text { gives us } \\
& a=\frac{r(1)(1-r(2))}{r(2)-r(1)} \text { and } b=\frac{(1-r(1))(1-r(2))}{r(2)-r(1)} \\
& \text { e.g., } a=3.5, b=1.5
\end{aligned}
$$

"Equivalent sample size"

- predictive probabilities change less radically when $a+b$ is large
- interpretation: before formulating prior one has experience of previous observations - thus with $a+b$ one can indicate confidence measured in observations
- called "prior sample size" or "equivalent sample size"
- Beta(1,1) is the uniform prior
- Beta($0.5,0.5$) is the Jeffreys prior

Another example

- Toss a coin 250 times, observe D: 140 heads and 110 tails.
- Hypothesis H_{0} : the coin is fair $(\mathrm{P}(\theta=0.5)=1)$
- Hypothesis H_{1} : the coin is biased
- Statistics:
$>$ The P-value is 7\%
$>$ "suspicious", but not enough for rejecting the null hypothesis (Dr. Barry Blight, The Guardian, January 4, 2002)
- Bayes:
$>$ Let's assume a prior, e.g. Beta(a,a)
$>$ Compute the Bayes factor
$\frac{P\left(D \mid H_{1}, a\right)}{P\left(D \mid H_{0}\right)}=\frac{\int P\left(D \mid \theta, H_{1}, a\right) P\left(\theta \mid H_{1}, a\right) d \theta}{\frac{1}{2^{250}}}$

Equivalent sample size and the Bayes Factor

Equivalent sample size

A slightly modified example

- Toss a coin 250 times, observe D = 141 heads and 109 tails.
- Hypothesis H_{0} : the coin is fair $(\mathrm{P}(\theta=0.5)=1)$
- Hypothesis H_{1} : the coin is biased
- Statistics:
$>$ The P -value is $4,97 \%$

$>$ Reject the null hypothesis at a significance level of 5\%
- Bayes:
> Let's assume a prior, e.g. Beta(a,a)
$>$ Compute the Bayes factor

$$
\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{0}\right)}=\frac{\int P\left(D \mid \theta, H_{1}, a\right) P\left(\theta \mid H_{1}, a\right) d \theta}{\frac{1}{2^{250}}}
$$

Equivalent sample size and the Bayes Factor (modified example)

Equivalent sample size

Lessons learned

- Classical statistics and the Bayesian approach may give contradictory results
> Using a fixed P -value threshold is absurd as any null hypothesis can be rejected with sufficient amount of data
$>$ The Bayesian approach compares models and does not aim at an "absolute" estimate of the goodness of the models
- Bayesian model selection depends heavily on the priors selected
$>$ However, the process is completely transparent and suspicious results can be criticized based on the selected priors
$>$ Moreover, the impact of the prior can be easily controlled with respect to the amount of available data
- The issue of determining non-informative priors is controversial
$>$ Reference priors
> Normalized maximum likelihood \& MDL (see www.mdl-research.org)

On Bayes factor and Occam's razor

- The marginal likelihood (the "evidence") $P(D \mid H)$ yields a probability distribution (or density) over all the possible data sets D.
- Complex models can predict well many different data sets, so they need to spread the probability mass over a wide region of models

