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Some early history

 Bernoulli (1654-1705)
 Bayes (1701-1761)
 Laplace (1749-1827)
 Prediction problem (“forward probability”):

 If the probability of an outcome in a single trial is p, what is the relative
frequency of occurrence of this outcome in a series of trials?

 Learning problem (“inverse probability”):
 Given a number of observations in a series of trials, what are the probabilities

of the different possible outcomes?
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The Bayes rule

 Axioms of probability theory:
 The sum rule:

P(A | C) + P(Ā | C) = 1
 The product rule:

P(AB | C) = P(A | BC) P (B | C)

 The Bayes rule:
 P(A | BC) = P(A | C) P(B | AC) / P(B | C)

 A rule for updating our beliefs after obtaining new
information

  H = hypothesis (model), I = background information, D =
data (observations):
 P(H | D I) = P(H | I) P(D | H I) / P(D | I)
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On plausible reasoning
 “The actual science of logic is conversant at present only with things

either certain, impossible, or entirely doubtful, non of which
(fortunately) we have to reason on. Therefore the true logic for this
world is the calculus of Probabilities, which takes account of the
magnitude of the probability which is, or ought to be, in a reasonable
man’s mind” (James Clerk Maxwell)

 Probabilistic reasoning is intuitively easy to understand, but on the
other hand intuition may be a poor guide when facing probabilistic
evidence

 “Inside every non-Bayesian there is a Bayesian struggling to get out”
(Dennis V. Lindley)
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Do I have a good test?

 A new home HIV test is assumed to have “95% sensitivity
and  98% specificity”

 a population has HIV prevalence of 1/1000. If you use the
test, what is the chance that someone testing positive
actually has HIV?
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Test continued ...
 P(HIV + | test HIV +) = ?
 We know that

 P(test HIV + | HIV +) = .95
 P(test HIV + | HIV -) = .02

 from Bayes we have learned that we can calculate the
probability of having HIV given a positive test result by

045.
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Thus finally

 thus over 95% of those testing positive will, in fact, not have
HIV

 the right question is:

How should the test result change our belief that we are
HIV positive?
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What is the model
space?

Fundamental questions

How do we search?

How do we 
compare models?
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Bayesian answers

 Model family (space) is made explicit
 Comparison criteria is a probability
 No restrictions on the search algorithm

 Model family is implicit (normal distributions)
 Comparison criteria is fit to data, deviation from “random”

behavior, “model index”
 Simple deterministic “greedy” algorithms
( )

Classical statistics answers
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Bayesian?

 Probabilities can be interpreted in various ways:
 Frequentist interpretation (Fisher,Neyman,

Cramer)
 “Degree of belief” interpretation (Bernoulli, Bayes,

Laplace, Jeffreys, Lindley, Jaynes)
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Frequentist says ...

 The long-run frequency of an event is the proportion of the
time it occurs in a long sequence of trials - probability is this
frequency

 probability can only be attached to “random variables” - not
to individual events
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Bayesian says ...

 an event x  = state of some part of the universe
 probability of x is the degree of belief that event x will occur
 probability will always depend on the state of knowledge
 p(x|y,C) means probability of event x given that event y is

true and background knowledge C
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Frequentist language for
solving problems

 P(data | model)
 sampling distributions

Model
?

Data
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Bayesian language for
solving problems

 Bayesian: P(data | model)  &  P(model | data)

?

Prior knowledge

Data
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Isn’t this what I already do? No.

…...

Estimator
(function of
data)

…...

ParameterModel
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“The Bayesian way”

Data

Model Parameter

Likelihood
 Prior
 distribution
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Reasons for using probability
theory

 Cox/Jaynes argument: probability is an appealing choice as
the language for plausible inference

 Berger argument: Decision theory offers a theoretical
framework for optimal decision making, and decision theory
needs probabilities

 Pragmatic argument: it is a very general framework and it
works
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Qualitative properties of p.r.

 D1. Degrees of plausibility are represented by real numbers
 D2. Direction of inference has a qualitative correspondence

with common sense
 For example: if Plaus(A | C´) > Plaus(A | C) and Plaus(B |C’) =

Plaus(B | C), then Plaus(AB | C’) > Plaus(AB | C)
 Ensures consistency in the limit (with perfect certainty) with deductive

logic

 D3. If a conclusion can be inferred in more than one way,
every possible way should lead to the same result

 D4. All relevant information is always taken into account
 D5. Equivalent states of knowledge must be represented by

equivalent plausibility assignments
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Real questions

 Q1: Given plausibilities Plaus(A) and Plaus(B), what is
Plaus(AB)?

 Q2: How is Plaus(~A) related to Plaus(A)?
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Cox/Jaynes/Cheeseman argument

 Every allowed extension of Aristotelian logic to plausibility
theory is isomorphic to Bayesian probability theory

 Product rule (answers question Q1)
 P(AB | C) = P(A | BC) P (B | C)

 Sum rule (answers question Q2)
 P(A | C) + P(Ā | C) = 1
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Bayesian inference: How to
update beliefs?
 Select the model space
 Use Bayes theorem to obtain the posterior probability

of models (given data)

Posterior distribution is “the result” of the inference; what one
needs from the posterior depends on what decisions are to be
made
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The Bayesian modeling viewpoint

 Explicitly include prediction (and intervention) in modeling

Models are a means (a language) to describe interesting
properties of the phenomenon to be studied, but they are 
not intrinsic to the phenomenon itself.

“All models are false, but some are useful.”



Three Concepts: Probability © Henry Tirri, Petri Myllymäki 1998-2007 47

(Being predictive …)

Good predictive models describe useful regularities of
the data generating mechanism, models that give a high
probability to the data have learnt to memorize it

 True prediction performance is a function of future data, not
a model fit to current data
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Bayesian decision making for
kids

 assign a benefit for every possible outcome (for every
possible decision)

 assign a probability to every possible outcome given every
possible decision

 what is the best decision?
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Decision theory argument

 Decision theory offers a theoretical framework for optimal
decision making

? P($100)=0.1, P($50)=0.9
Expected utility:
0.1*$100+0.9*$50=$55

P($200)=0.2, P($5)=0.8
Expected utility:
0.2*$200+0.8*$5=$44

P($80)=0.5, P($50)=0.5
Expected utility:
0.5*$80+0.5*$50=$65
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Optimal actions

 Optimal policy: choose the action with maximal expected
utility

 The Dutch book argument: betting agencies must be
Bayesians

 Where to get the utilities? (decision theory)
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“Pragmatic” reasons for
using probability theory

 The predictor and predicted variables (the inference task)
do not have to be determined in advance
 probabilistic models can be used for solving both classification

(discriminative tasks), and configuration problems and prediction
(regression problems)

 predictions can also be used as a criteria for Data mining
(explorative structures)
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More pragmatic reasons for
using probability theory
 consistent calculus

 creating a consistent calculus for uncertain inference is not easy
(the Cox theorem)

 cf. fuzzy logic

 Probabilistic models can handle both discrete and
continuous variables at the same time

 Various approaches for handling missing data (both in
model building and in reasoning)
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Nice theory, but...

 “isn’t probabilistic reasoning counter-intuitive, something totally
different from human reasoning?”
 Cause for confusion: the old frequentist interpretation. But probabilities do NOT

have to be thought of as frequencies, but as measures of belief
 The so called paradoxes are often misleading

A: P($1.000.000)=1.0
B: P($1.000.000)=0.25, P($4.000.000)=0.25, P($0)=0.5

 Even if that were true, maybe that would be a good thing!
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Nice theory, but...

 “Where do all the numbers come from?”
 Bayesian networks: small number of parameters
 the numbers do not have to be accurate
 probability theory offers a framework for constructing models from

sample data, from domain knowledge, or from their combination
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We can learn from Bayesians :-)

 Bayesian approaches never overfit (in
principle)

 Bayesian approaches infer only from
observed data (not possible data)

 Bayesian inference is always relative to a
model family

 Does all this semi-philosophical debate
really matter in practice?
 YES!!
 (see e.g. “The great health hoax” by

Robert Matthews. The Sunday Telegraph,
September 13, 1998. )

“I rest my case”


