

Some famous network models

● Naïve Bayes / Finite mixture model
● Tree Augmented Naïve Bayes
● Hidden Markov Models

Naïve Bayes classifier

Class

X
1 X

2 X
3

X
4

X
5

P(C)

P(X
1
|C) P(X

2
|C) P(X

3
|C) P(X

4
|C) P(X

5
|C)

●X
i
 are called predictors or indicators

Naïve Bayes Classifier

● Structure tailored for efficient diagnostics
P(C|x

1
,x

2
,...,x

n
).

● Unrealistic conditional independence
assumptions, but OK for the particular query
P(C|x

1
,x

2
,...,x

n
).

● Because of wrong independence assumptions,
NB is often poorly calibrated:

– Probabilities P(C|x
1
,x

2
,...,x

n
) way off, but argmax

c

P(c|x
1
,x

2
,...,x

n
) still often correct.

Calculating P(C|x
1
,x

2
,...,x

n
,NB)

● Boldly calculate through joint probability

PC∣x1, ... , xn∝PC,x1,... , xn=PC∏
i=1

n

P xi∣C

PC∣xA∝P C,xA=∑
xB

P C,xA ,xB

=∑
xB

P C∏
i∈A

P xi∣C∏
j∈B

P x j∣C

=PC∏
i∈A

P xi∣C∑
xB

∏
j∈B

P x j∣C

=PC∏
i∈A

P xi∣C∏
j∈B
∑
x j

P x j∣C=P C∏
i∈A

P x i∣C

● No need to have all the predictors. Having just
set X

A
 of predictors (and not X

B
):

Tree Augmented Naïve Bayes (TAN)

Class

X
1 X

2 X
3

X
4

X
5

P(C)

P(X
1
|C) P(X

2
|C,X

1
) P(X

3
|C) P(X

4
|C,X

3
) P(X

5
|C,X

1
)

●X
i
 may have at most one other X

j
 as an extra parent.

Calculating P(C|x
1
,x

2
,...,x

n
,TAN)

● Again, boldly calculate via joint probability

PC∣x1,... , xn∝P C,x1, ... , xn=P C∏
i=1

n

P xi∣C,Pa xi

PC∣x5∝P CP x5∣C=P C∑
x4

P x4∣CP x5∣x4,C

=PC∑
x4

P x5∣C,x4P x4∣C

=PC∑
x4

P x5∣C,x4∑
x3

Px4∣C, x3Px3∣C

=...

● But missing predictors may hurt more. For
example, given the TAN in previous slide:

C

X
1 X

2
X

3
X

4
X

5

NB as a Finite Mixture Model

● When NB structure is right, it also makes a nice
(marginal) joint probability model P(X

1
,X

2
,...,X

n
)

for “predictors”.
● A computationally effective alternative for

building a Bayesian network for X
1
,X

2
,...,X

n
.

● Joint probability P(X
1
,X

2
,...,X

n
) is represented as

a mixture of K joint probability distributions
P

k
(X

1
,X

2
,...,X

n
) = P

k
(X

1
)P

k
(X

2
)...P

k
(X

n
), where

P
k
(·) = P(·|C=k).

Calculating with P(X
1
,X

2
,...,X

n
|NB)

● Joint probability a simple marginalization:

PX1,... ,Xn=∑
k=1

K

PX1,... ,Xn ,C=k

=∑
k=1

K

PC=k ∏
i=1

n

P Xi∣C=k

PX∣e∝P e,X =∑
k=1

K

Pe,X ,C=k

=∑
k=1

K

P C=k P e,X∣C=k

=∑
k=1

K

∏
X i∈X

PX i∣C=k ∏
ei∈e

P ei∣C=k

● Inference

Hidden Markov Models

● Models observations about a system that
changes its state.

X
t

X
t+1

e
t

e
t+1

P(X
t+1

|X
t
)

P(e
t
|X

t
)

Transition model

Sensor model NB! Models do not depend
on time t.

No colliding arcs, thus
independences are
easy to determine.

Joint probability

● Joint probability like in Bayesian network
– HMM is a Bayesian network

PX0 ,X1,E1 ,X2 ,E2, ... ,Xt ,Et=PX0∏
i=1

t

P X i∣X i−1P Ei∣Xi

● Common inference tasks:

– Filtering / monitoring: P(X
t
 | e

1:t
)

– Prediction: P(X
t+k

 | e
1:t

), k>0

– Smoothing: P(X
k
 | e

1:t
), k<t

– Explanation: P(X
1:t

 | e
1:t

)

Calculating P(X
t
 | e

1:t
) in HMM

● Lets shoot for a recursive formula:

P Xt1∣e1: t1=PXt1∣et1 ,e1: t
∝Pet1∣Xt1 ,e1:tPXt1∣e1:t
=Pet1∣Xt1P Xt1∣e1: t

● and

P Xt1∣e1: t=∑
xt

P Xt1 , xt∣e1: t

=∑
xt

P Xt1∣xt ,e1: tP Xt∣e1:t

=∑
xt

P Xt1∣xtP xt∣e1: t

Forward algorithm for P(X
t
 | e

1:t
)

● Combining formulas we get a recursion

PXt1∣e1:t1∝Pet1∣Xt1∑
xt

PXt1∣xtP xt∣e1:t

● So first calculate

PX1∣e1∝Pe1∣X1∑
x0

P X1∣x0Px0

● and then

PX2∣e1,e2∝P e2∣X2∑
x1

PX2∣x1P x1∣e1

PX3∣e1,e2,e3∝P e3∣X3∑
x2

P X3∣x2P x2∣e1,e2

Prediction: P(X
t+k

 | e
1:t

), k>0

● P(X
t+1

 | e
1:t

) part of the forward algorithm

● and from that on evidence does not count, and
one can just calculate forward:

P Xt2∣e1: t=∑
xt1

P Xt2∣xt1 ,e1:tP xt1∣e1:t

=∑
xt1

P Xt2∣xt1Pxt1∣e1:t

P Xt3∣e1: t=∑
xt2

P Xt3∣xt2 ,e1:tP xt2∣e1:t

=∑
xt2

P Xt3∣xt2Pxt2∣e1:t

Smoothing: P(X
k
 | e

1:t
), k<t

● Obvious move: divide e
1:t

 to e
1:k

 and e
k+1:t

.
PXk∣e1:t =PXk∣e1:k ,ek1:t

∝P Xk∣e1:kP ek1:t∣Xk ,e1:k
=PXk∣e1:kP ek1: t∣Xk

Pet∣X t−1=∑
xt

Px t ,et∣Xt−1=∑
xt

Pet∣xt ,X t−1Px t∣X t−1

=∑
xt

P et∣xt P xt∣Xt−1

Pek1:t∣Xk=∑
xk1

P xk1 ,ek1:t∣Xk

=∑
xk1

P xk1∣XkPek1:t∣xk1 ,Xk

=∑
xk1

P xk1∣XkPek1 ,ek2: t∣xk1

=∑
xk1

P xk1∣XkPek1∣xk1P ek2:t∣xk1

● and the first (last) step:

P ek1:t∣Xk=∑
xk1

P xk1 ,ek1:t∣Xk

=∑
xk1

P xk1∣XkPek1:t∣xk1 , Xk

=∑
xk1

P xk1∣XkPek1 ,ek2:t∣xk1

=∑
xk1

P xk1∣XkPek1∣xk1P ek2:t∣xk1

