
  

Some famous network models

● Naïve Bayes / Finite mixture model
● Tree Augmented Naïve Bayes
● Hidden Markov Models



  

Naïve Bayes classifier
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Naïve Bayes Classifier

● Structure tailored for efficient diagnostics     
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● Unrealistic conditional independence 
assumptions, but OK for the particular query 
P(C|x

1
,x

2
,...,x

n
).

● Because of wrong independence assumptions, 
NB is often poorly calibrated:
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Calculating P(C|x
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● Boldly calculate through joint probability
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● No need to have all the predictors. Having just 
set X

A
 of predictors (and not X

B
):



  

Tree Augmented Naïve Bayes (TAN) 
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 may have at most one other X

j
 as an extra parent.



  

Calculating P(C|x
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● Again, boldly calculate via joint probability

PC∣x1,... , xn∝P C,x1, ... , xn=P C∏
i=1

n

P xi∣C,Pa xi

PC∣x5∝P CP x5∣C=P C∑
x4

P x4∣CP x5∣x4,C

=PC∑
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=...

● But missing predictors may hurt more. For 
example, given the TAN in previous slide:

C

X
1 X

2
X

3
X

4
X

5



  

NB as a Finite Mixture Model

● When NB structure is right, it also makes a nice 
(marginal) joint probability model P(X
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for “predictors”.
● A computationally effective alternative for 

building a Bayesian network for  X
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● Joint probability P(X
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a mixture of K joint probability distributions 
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Calculating with P(X
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● Joint probability a simple marginalization:

PX1,... ,Xn=∑
k=1

K

PX1,... ,Xn ,C=k 

=∑
k=1

K

PC=k ∏
i=1

n

P Xi∣C=k 

PX∣e∝P e,X =∑
k=1

K

Pe,X ,C=k 

=∑
k=1

K

P C=k P e,X∣C=k 

=∑
k=1

K

∏
X i∈X

PX i∣C=k ∏
ei∈e

P ei∣C=k 

● Inference



  

Hidden Markov Models

● Models observations about a system that 
changes its state.
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Transition model

Sensor model NB! Models do not depend
on time t.

No colliding arcs, thus 
independences are  
easy to determine.



  

Joint probability

● Joint probability like in Bayesian network
– HMM is a Bayesian network

PX0 ,X1,E1 ,X2 ,E2, ... ,Xt ,Et=PX0∏
i=1

t

P X i∣X i−1P Ei∣Xi

● Common inference tasks:

– Filtering / monitoring: P(X
t
 | e

1:t
)

– Prediction: P(X
t+k

 | e
1:t

), k>0

– Smoothing: P(X
k
 | e

1:t
), k<t

– Explanation: P(X
1:t

 | e
1:t

)



  

Calculating P(X
t
 | e

1:t
) in HMM

● Lets shoot for a recursive formula:

P Xt1∣e1: t1=PXt1∣et1 ,e1: t
∝Pet1∣Xt1 ,e1:tPXt1∣e1:t
=Pet1∣Xt1P Xt1∣e1: t

● and 

P Xt1∣e1: t=∑
xt

P Xt1 , xt∣e1: t

=∑
xt

P Xt1∣xt ,e1: tP Xt∣e1:t

=∑
xt

P Xt1∣xtP xt∣e1: t



  

Forward algorithm for P(X
t
 | e

1:t
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● Combining formulas we get a recursion

PXt1∣e1:t1∝Pet1∣Xt1∑
xt

PXt1∣xtP xt∣e1:t 

● So first calculate

PX1∣e1∝Pe1∣X1∑
x0

P X1∣x0Px0

● and then

PX2∣e1,e2∝P e2∣X2∑
x1

PX2∣x1P x1∣e1

PX3∣e1,e2,e3∝P e3∣X3∑
x2

P X3∣x2P x2∣e1,e2





  

Prediction: P(X
t+k

 | e
1:t

), k>0

● P(X
t+1

 | e
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) part of the forward algorithm

● and from that on evidence does not count, and 
one can just calculate forward:

P Xt2∣e1: t=∑
xt1

P Xt2∣xt1 ,e1:tP xt1∣e1:t

=∑
xt1

P Xt2∣xt1Pxt1∣e1:t

P Xt3∣e1: t=∑
xt2

P Xt3∣xt2 ,e1:tP xt2∣e1:t

=∑
xt2

P Xt3∣xt2Pxt2∣e1:t





  

Smoothing: P(X
k
 | e

1:t
), k<t

● Obvious move: divide e
1:t

 to e
1:k

 and e
k+1:t

.
PXk∣e1:t =PXk∣e1:k ,ek1:t 

∝P Xk∣e1:kP ek1:t∣Xk ,e1:k
=PXk∣e1:kP ek1: t∣Xk

Pet∣X t−1=∑
xt

Px t ,et∣Xt−1=∑
xt

Pet∣xt ,X t−1Px t∣X t−1

=∑
xt

P et∣xt P xt∣Xt−1

Pek1:t∣Xk=∑
xk1

P xk1 ,ek1:t∣Xk

=∑
xk1

P xk1∣XkPek1:t∣xk1 ,Xk

=∑
xk1

P xk1∣XkPek1 ,ek2: t∣xk1

=∑
xk1

P xk1∣XkPek1∣xk1P ek2:t∣xk1

● and the first (last) step:



  

P ek1:t∣Xk=∑
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P xk1 ,ek1:t∣Xk
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P xk1∣XkPek1:t∣xk1 , Xk

=∑
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P xk1∣XkPek1 ,ek2:t∣xk1
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P xk1∣XkPek1∣xk1P ek2:t∣xk1


