
  

Lecture 5
Data-analysis

● Data
● Generative model
● Likelihood
● Maximum likelihood
● Bayesian learning



  

Generative model

Data Generates

● The world is described by a model that governs 
the probabilities of observing different kinds of 
data.



  

Data
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● We will mostly handle tabular format discrete 
variables.



  

● Data item d is generated by a mechanism 
(model)  parameters Θ of which determine how 
probably different values of d are generated, 
i.e., the distribution of d.

● An example:
– Mechanism is drawing with replacement from a 

bucket of black and white balls, and the parameter 
θ

b
 is the number of black balls, and the θ

w
 is the 

number of white balls in a bucket:
● P(b|θ

b
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w
) = θ

b
/(θ

b
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w
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b
,θ
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w
/(θ
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w
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● In orthodox statistics, likelihood P(D|) is often seen as a 
function of , a kind of L

D
(). Whatever.

Likelihood P(d|Θ)



  

i.i.d.

● If the data generating mechanism depends on 
Θ only (and not on what has been generated 
before), the sequence of data data is called 
independent and identically distributed. 

● Then 
● And 

– order of d
i
 does not matter.

–
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Bernoulli model

● A model for i.i.d. binary outcomes (heads,tails) 
(0,1), (black, white), (true, false).

● One parameter: [0,1]. 
– For example:

● P(d=true | ) = , P(d=false| ) = 1-.
● NB! The probabilities of d being true are defined by the 

parameter Parameters are not probabilities.
● Black and white bucket as a Bernoulli model: 

–  is the proportion of black balls in a bucket P(b | ) = 
– P(D|) = NbNw, where N

b
 and N

w
 are numbers of black and 

white balls in the data D. 

– NB! P(D|) depends on data D through N
b
 and N

w
 only.



  

Maximum likelihood

● Given a data D, different values of  yield 
different probabilities P(D|). The parameters 
that yield the largest probability of P(D|) are 
called maximum likelihood parameters for the 
data D.
– P(b,b,w,w,w|Θ=0.7) = 0.720.33=0.1323
– P(b,b,w,w,w|Θ=0.1) = 0.120.93=0.00729

– argmax

 P(b,b,w,w,w|Θ=) = argmax


 )3=?



  

Likelihood P(b,b,w,w,w|Θ)
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●NB! Not a distribution, but a function of Θ.



  

ML-parameters for the Bernoulli model.
(High school math refresher)

● So let us find ML-parameters for the Bernoulli 
model for the data with N

b
 black balls and N

w
 

white ones.

P D∣=
Nb 1−

Nw ,
so let us check when P ' D∣=0,∈]0,1[ .
P 'D∣=Nb

Nb−1
1−

Nw
Nb Nw1−

Nw−1
⋅−1

=
Nb−1

1−
Nw−1

[Nb1−−Nw]

=
Nb−1

1−
Nw−1

[Nb−NbNw]=0

⇔Nb−NbNw=0 ⇔=
Nb

NbNw



  

But ML-parameters are too gullible

● Assume D=(b,b), i.e., two black balls. 
– ML-parameter is Θ=1. 
– Now P(next ball is white | Θ=1)= 0. 
– Selecting ML parameters do not appear to be a 

rational choice.
● Be Bayesian:

– Parameters are exactly the things you do not know 
for sure, so they have a (prior and posterior) 
distribution. 

– Posterior distribution of the model is the goal of 
the Bayesian data-analysis.



  

Good old Bayes rule

● Nothing special since 
Θ is just a random 
variable.

● And if i.i.d, we get a 
kind of Naïve Bayes 
structure.

● NB. Not a typical 
Bayesian network 
since parameter(s) 
also drawn as 
node(s).
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Predicting with posterior distribution

● Not a two phase process like in ML-case
– first find parameters Θ.
– then use them to calculate P(d|Θ).

● Instead: P d∣D=∑
∈

P  ,d∣D

=∑
∈

P d∣ , DP ∣D

=∑
∈

P d∣P ∣D

● Bayesian prediction uses predictions P(d|) 
from all the models , and weighs them by the 
posterior probability P(|D) of the models. 



  

Posterior for Bernoulli parameter

● So likelihood P(D|) we can calculate.

● How about the prior P()? 

– We should give a real number for each .
● One way out: use discrete set of parameters instead of 

continuous . Works, is flexible, but does not scale up 
well.

● Another way: Study calculus. 

● And how about
–  P(D) contains P(), so let us care about the prior 

first.

P D=∫
0

1

P P D∣d



  

● The form of the likelihood gives us a hint for a 
comfortable prior 
– P(D|) = NbNw

– If we define the P() = C α-1β-1, 
● C taking care that ∫P()d = 1, then 

– P()P(D|)=C Nb+α-1Nw+β-1

● Thus updating from prior to posterior is easy. 
Just use the formula for the prior, and update 
exponents α-1 and β-1.

Prior for Bernoulli model



  

P(Θ) of a form  C α-1β-1 is 
called Beta(α,β) distribution

● The expected value of Θ is α/(α+β).
● The normalizing constant

C=
1

∫
0

1


−1

1−
−1 d

=


 
,

where  is the
gamma-function,
a continuous version
of the factorial:

n=n−1!



  

Posterior of the Bernoulli model

● Thus, a posteriori, Θ is distributed by                 
Beta(α+N

b
,β+N

w
). 

● And prediction:

P ∣D , ,=
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.



  

Bernoulli prediction example

● So P(b|w,w,α=1,β=1) = (1+0) / (1+0+1+2) = 1/4.
– sounds more rational.

– Notice how α and β act like extra counts.
● That's why α + β is often called “equivalent 
sample size”. The prior acts like seeing α 
black balls and β white balls before seeing 
data.

P b∣D, ,=
Nb

NbNw

.



  

● Variable X with possible values 1,2,...,n.

● Parameter vector (
1


2


n
) with Σ

i


● P(X=i|)=
i
. 

● Prior P()=Dir(
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n
) =

●
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n
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● Prediction P(x
i
 | D, ) = 

One variable, more than two values

∑
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