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Models 
for 

proportions
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Generative model

Data
Generates

● The world is described by a model that governs 
the probabilities of observing different kinds of 
data.

ϴ
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Steps in Bayesian inference
● Specify a set of generative probabilistic 

models
● Assign a prior probability to each model
● Collect data
● Calculate the likelihood  P(data|model) of each 

model
● Use Bayes’ rule to calculate the posterior 

probabilities P(model | data)
● Draw inferences (e.g., predict the next 

observation)
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● Data item d is generated by a mechanism 
(model), parameters Θ of which determine how 
probably different values of d are generated, 
i.e., the distribution of d.

● An example:
− Mechanism is drawing with replacement from a 

bucket of black and white balls, and the parameter 
θ

b
 is the number of black balls, and the θ

w
 is the 

number of white balls in a bucket:

• P(b|θ
b
,θ

w
) = θ

b
/(θ

b
+θ

w
) and P(w|θ

b
,θ

w
) = θ

w
/(θ

b
+θ

w
).

● In orthodox statistics, likelihood P(D|ϴ) is often seen as a 
function of ϴ, a kind of L

D
(ϴ). Whatever.

Likelihood P(d|Θ)
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i.i.d.
● If the data generating mechanism depends on 

ϴ only (and not on what has been generated 
before), the sequence of data data is called 
independent and identically distributed. 

● Then 
● And 

− order of d
i
 does not matter.

−

P d1,d2,,dn∣=∏
i=1

n

P di∣

P b,w ,b ,b ,w∣=P b,b ,w ,w ,w∣
=P b∣P b∣P w∣P w∣P w∣
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The Bernoulli model
● A model for i.i.d. binary outcomes (heads,tails), 

(1,0), (black, white), (true, false),....
● One parameter: ϴ ϵ [0,1]. For example: 

P(d=true | ϴ) = ϴ, P(d=false| ϴ) = 1-ϴ.
− NB! The probabilities of d being true are defined by 

the parameter ϴ. Parameters are not probabilities.
− Black and white ball bucket as a Bernoulli model: 

• ϴ is the proportion of black balls in a bucket P(b | ϴ) = ϴ.
• P(D|ϴ) = ϴNb (1−ϴ)Nw, where N

b
 and N

w
 are numbers of 

black and white balls in the data D. 
• NB! P(D|ϴ) depends on data D through N

b
 and N

w
 only 

(=sufficient statistics)
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Example
● You are installing WLAN-cards for different 

machines. You get the WLAN-cards from the 
same manufacturer, and some of them are 
faulty.

● We are asking the question: “Is the next 
WLAN-card we are installing going to work?”

● We are allowed to have background 
knowledge of these cards (they have been 
reliable/unreliable in the past, the 
manufacturing quality has gone up/down etc.)
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Assessing models

● Let A = “The WLAN-card is not faulty”, and 
B=~A

● A proportion model can be understood  as 
a bowl with labeled balls (A,B)

● each model M(ϴ) is characterized by the 
number of A balls, ϴ is the proportion 
(Obs! Assume here that ϴ is discrete, i.e., 
only consider  ϴ ϵ {0,0.1,0.2,…,1})
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Our 11 models
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Priors and the models
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The prior distribution P(M(ϴ))
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Prediction by model averaging

● A Bayesian predicts by model averaging: 
the uncertainty about the model is taken 
into account by weighting the predictions 
of the different alternative models M

i 

(=marginalization over the unknown)

P  X =∑
i

P  X∣M i P M i 
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So: the predictive probability is...
● What is P(A), the probability that the next 

WLAN-card is not faulty?

● ”Mean or average” model: ϴ =0.598
● 60/40 odds a priori

P A=P A∣M 0.0P M 0.0P A∣M 0.1P M 0.1...P A∣M 1.0P M 1.0
=0.00.020.03...0.0=0.598
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Enter some data ...
● Assume that I have installed three WLAN-

cards: first was non-faulty (A), the two latter 
ones faulty (B), i.e., D={ABB}

● what are the updated (posterior) probabilities 
for the models M(ϴ)?

● Enter Bayes, for example for M(0.6):
0.2

P M 0.6∣D =
P D∣M 0.6P M 0.6

P D 
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Calculating model likelihoods

● i.i.d.: we assume that the observations are 
independent given any particular model M(ϴ)

● P(ABB | M(0.6)) = 0.6 * 0.4 * 0.4 = 0.096
● This is repeated for each model M(ϴ)

To calculate the likelihood of a model, multiply the
probabilities of the individual observations given the model
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Likelihood histogram P(ABB|M(ϴ))
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Posterior = likelihood x prior
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The normalizing factor P(D)

P M ∣D=
P D∣M P M 

P D
Calculate:
P D∣M 0.0P M 0.0=s1

P D∣M 0.1P M 0.1=s2

...
P D∣M 1.0P M 1.0=s11

Then:
P D=s1s2...s11
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Posterior distribution P(M(ϴ)|D)
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Predictive probability with data D
● With data D, the prediction is based on 

averaging over the models M(ϴ) weighted 
now by the posterior (instead of the prior 
used earlier) probability of the models:

P X ∣D=∑
i

P X ∣M i , DP M i∣D
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How did the probabilities
change?

● The predictive probability P(A | D) =  P(A|ABB) 
that the next (fourth) WLAN-card is OK came 
down from the prior 60% to 52% (the change 
is not great because the data set is small)
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Densities for proportions
● a richer set of models allows more precise 

proportion estimates, but comes with a cost: 
the amount of calculations necessary increase 
proportionally

● we can move to consider infinite number of 
models

– each model ϴ is now a point on the interval from 
[0,1]

– we get a “smoothed” bar chart called a density P(ϴ)
– ∫P(ϴ)dϴ=1
– only collections of models can have a probability > 0
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Bayesian inference with densities?
● Using densities means that we no longer add 

probabilities, but calculate areas
● To represent “infinite bar charts” we use 

curves that approximate the heights of bars
● But how to predict with densities? We cannot 

go over all the individual models as we did in 
the discrete case

● What about the prior?
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Maximum likelihood
● Given a data D, different values of ϴ yield 

different probabilities P(D|ϴ). The parameters 
that yield the largest probability of P(D|ϴ) are 
called maximum likelihood parameters for the 
data D.
− P(b,b,w,w,w|Θ=0.7) = 0.720.33=0.1323
− P(b,b,w,w,w|Θ=0.1) = 0.120.93=0.00729

− argmax
ϴ
 P(b,b,w,w,w|ϴ) = argmax

ϴ
 ϴ2(1−ϴ)3=?
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Likelihood P(b,b,w,w,w|Θ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0,01

0,01

0,02

0,02

0,03

0,03

0,04

0,04

P(D|theta)

●NB! Not a distribution, but a function of ϴ.
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ML-parameters for the Bernoulli model.
(High school math refresher)

● So let us find ML-parameters for the Bernoulli 
model for the data with N

b
 black balls and N

w
 

white ones.
P D∣=Nb 1−Nw ,
so let us check when P ' D∣=0,∈]0,1[ .
P 'D∣=Nb

Nb−1 1−NwNbNw1−Nw−1⋅−1

=Nb−11−Nw−1[Nb1−−Nw]
=Nb−11−Nw−1[Nb−NbNw]=0

⇔Nb−NbNw=0 ⇔=
Nb

NbNw
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But ML-parameters are too gullible
● Assume D=(w,w), i.e., two white balls. 

− ML-parameter is Θ=0. 
− Now P(next ball is black | Θ=0)= 0. 
− Selecting ML parameters do not appear to be a 

rational choice.

● Be Bayesian:
− Parameters are exactly the things you do not know 

for sure, so they have a (prior and posterior) 
distribution. 

− Posterior distribution of the model is the goal of 
the Bayesian data-analysis.
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Predicting with posterior 
distribution

● Not a two phase process like in ML-case
− first find ML parameters Θ.
− then use them to calculate P(d|Θ).

● Instead: P d∣D=∫
∈

P  ,d∣D

=∫
∈

P d∣ , DP ∣D

=∫
∈

P d∣P ∣D

● Bayesian prediction uses predictions P(d|ϴ) 
from all the models ϴ, and weighs them by the 
posterior probability P(ϴ|D) of the models. 
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Posterior for Bernoulli parameter
● So likelihood P(D|ϴ) we can calculate.
● How about the prior P(ϴ)? 

− We should give a real number for each ϴ.
• One way out: as earlier, use a discrete set of 

parameters instead of continuous ϴ. (Works, is flexible, 
but does not scale up well.)

• Another way: Study calculus. 
● And how about P D=∫

0

1

P P D∣d
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● The form of the likelihood gives us a hint for a 
comfortable prior 
− P(D|ϴ) = ϴNb (1−ϴ)Nw

− If we define the P(ϴ) = c ϴα-1 (1−ϴ)β-1, 

• c taking care that ∫P(ϴ)dϴ = 1, then 

− P(ϴ)P(D|ϴ) = c  ϴNb+α-1 (1−ϴ)Nw+β-1

● Thus updating from prior to posterior is easy: 
just use the formula for the prior, and update 
exponents α-1 and β-1 (conjugate prior).

Prior for Bernoulli model
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P(ϴ) of a form c ϴα-1(1−ϴ)β-1 is called 
Beta(α,β) distribution

● The expected value of Θ is α/(α+β).
● The normalizing constant is

c= 1

∫
0

1

−1 1−−1d

=

  

,

where   is the
gamma function,
a continuous version
of the factorial:

 n=n−1!
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Posterior of the Bernoulli model

● Thus, a posteriori, Θ is distributed by                 
Beta(α+N

b
,β+N

w
). 

● And prediction:

P ∣D, ,=
NbNw
 Nb Nw

Nb−11−Nw−1

P b∣D , ,=∫
0

1

P b∣ , D , ,P ∣D , ,d

=∫
0

1

P b∣P ∣D , ,d=∫
0

1

P ∣D , ,d

=EP =
Nb

NbNw

.
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Bernoulli prediction

● So P(b|w,w,α=1,β=1) = (1+0) / (1+0+1+2) = 1/4.
− Sounds more rational!
− Notice how the hyperparameters α and β act 

like extra counts.
− That's why α + β is often called “equivalent 

sample size”. The prior acts like seeing α 
black balls and β white balls before seeing 
data.

P b∣D, ,=
Nb

NbNw

.
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Laplace smoothing = Beta(1,1)
● For Bayesian inference, we can use a single 

model ϴ* which is the mean of the Beta(α,β) 
density: 

• ϴ* = (α + N+)/(α + N+ 
+ β + N-)

● E.g.: flip a coin 10 times, observe 7 heads 
(“success”). Assuming a uniform prior Beta(1,1), 
the posterior for the ϴ becomes Beta(8,4), and 
hence the predictive probability of heads is 
8/12=2/3, or:
− ϴ* = (7+1)/(10+2)

● Also known as Laplace’s rule of succession or 
Laplace smoothing
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Equivalent sample size

● Predictive probabilities change less radically 
when α+β is large

● Interpretation: before formulating the prior, 
one has experience of previous observations 
- thus with α+β one can indicate confidence 
measured in observations

● Called “prior sample size” or “equivalent 
sample size”

● Beta(1,1) is the uniform prior
● Beta(0.5,0.5) is the Jeffreys prior
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● Variable X with possible values 1,2,...,n.

● Parameter vector =(ϴ
1
, ϴ

2
, ..., ϴ

n
) with Σϴ

i
=1.

● P(X=i|ϴ)=ϴ
i
.   Prior P(ϴ) =

Dirichlet(ϴ; α
1
, α

2
, ..., α

n
) =

● Posterior P(ϴ)=Dir(ϴ; α
1
+N

1
, α

2
+N

2
, ..., α

n
+N

n
)

● Prediction P(x
i
 | D, α) = 

One variable, more than two values

∑
i=1

n

i

∏
i=1

n

i
∏
i=1

n

i
i−1

iN i

∑
j=1

n

 jN j

.

http://en.wikipedia.org/wiki/Dirichlet_distribution

	Models  for proportions
	Slide 2
	Steps in Bayesian inference
	Slide 4
	Slide 5
	Slide 6
	Example
	Assessing models
	Population models
	Priors and models
	Prior distribution
	Principle of Model averaging
	Predictive probability
	Enter more data ...
	Calculating model likelihoods
	Likelihood histogram P(D|M())
	Posterior = likelihood * prior
	Slide 18
	Posterior distribution P(M()|D)
	Predictive probability with data D
	How did the probabilities change?
	Many models
	Beta Densities
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Predictive probability for beta densities
	“Equivalent sample size”
	Slide 36

