


On learning and inference

- Assume n binary random variables X,,...,X_
- A joint probability distribution P(X,,...,X")

* Inference:

- compute the conditional probability distribution for the thing you want
to know, given all that you know, marginalizing out all that you don't
know and don’t want to know

- In pricinple exponential, requires O(2") operations

- Can be simplified if the joint distribution factorizes by indepencence:
P(A,B)=P(A)P(B)

* Learning:

- learn the model structure: what is (conditionally) independent of what

- learn the parameters defining the "local” distributions

» Supervised learning: construct directly a model for the
required conditional distribution, without forming the joint
distribution first
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Probabilistic reasoning

n (discrete) random variables X,,...,X_
joint probability distribution P(X,,...,X")
* |nput: a partial value assngnment Q,
QO =< X,, X,;=X,, X;, X,=X,, Xo=Xg, Xg,.n, X >

* Probabilistic reasoning:
- compute P(X=x| Q) for all X not instantiated in Q, and
for all values of each X (the marginal distribution), OR:

- find a MAP (maximum a posterior probability)
assignment consistent with Q

- N.B. These are not the same thing|!

- Bayesian networks: a family of probabilistic models and 4!
algorithms enabling computationally efficient probablllstlc ""lu
reasoning #
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Bayesian networks: a "Billion
dollar” perspective

r’!I

“Microsoft’s competitive advantage, he [Gates]
responded, was its expertise in “Bayesian networks”.
Ask any other software executive about anything
“Bayesian” and you’re liable to get a blank stare. Is
Gates onto something? Is this alien-sounding
technology Microsoft’s new secret weapon?”

(Leslie Helms, Los Angeles Times, October 28, 1996.)
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Start Oover Change Mext == Fini=h
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What do Bayesian networks
have to offer?

* encoding of the covariation between “input” variables
- BN can handle incomplete data sets

* allows one to learn about causal relationships
(predictions in the presence of interventions)

« natural way of combining domain knowledge and data
as a single model

» Computationally efficient inference algorithms for
multi-dimensional domains
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Bayesian networks: basics

- A Bayesian network is a model of probabilistic
dependencies between the domain variables.

» The model can be described as a list of _
(in)dependencies, but is is usually more convenient to
ex?reSﬁ them in a graphical form as a directed acyclic
network.

* The nodes in the network correspond to the domain
variables, and the arcs reveal the underlyin

dependencies, i.e., the hidden structure of t%e domain of

your data.

* The "quantitative strengths” of the dependencies are
modeled as conditional probability distributions (not
shown in the graph).

2
wa
P
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Bayesian networks?

* A very poor name, nothing Bayesian per se
* A parametric probabilistic model that

- can be used for Bayesian inference (or not)
- can be learned via Bayesian methods (or not)

- 1s conveniently represented as a graph (a
probabilistic graphical model)

* A better name: directed acyclic graph (DAG)
* (Even better: acyclic directed graph)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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The two-variable case

* Assume two binary (Bernoulli distributed)
variables A and B

* Two examples of the joint distribution P(A,B):

B=1 B=0 | P(A)
A=1 008 0.02 0.10
A=0 072 018 0.90
P(B) 0.80 0.20

P(A,B)=P(A)P(B)

We only need the
marginals P(A) and P(B)!

B=1 B=0 | P(A)
A=1 008 0.02 0.10
A=0 018 072 0.90
P(B) 026 074
P(A,B)#P(A)P(B)

We need the full table
(or: P(A,B)=P(A)P(B|A))

Probabilistic Models, Spring 2009
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Independence

 If P(A,B)=P(A)P(B), Aand B are said to be
independent

* Note that this also means that P(A | B) = P(A) (and:
P(B|A)=P(B))

 |f Aand B are not independent, they are dependent

* Independe can be used to separate from all joint
distributions P(A,B) the subset where the
iIndependence holds

* Independence simplifies (constrains) things:

- AL B: subset of distributions
- notA-L B: all distributions

®
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Types of independence

 if P(A=a,B=a) = P(A=a)P(B=b) for all a and b,
then we call A and B (marginally) independent.

 if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c)
for all a and b, then we call A and B
conditionally independent given C=c.

 if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c)
for all a, b and c, then we call A and B
conditionally independent given C.

. P(A,B)=P(A)P(B) implies

_P(A,B)_P(A)P(B)_
P(A|B)= P B = BB =P(A)

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Examples
« Amount of Speeding fine 1+ Type of car | Speed

- But: Amount of Speeding fine # Type of car
« Lung cancer -- Yellow teeth | Smoking

- But: Lung cancer # Yellow teeth

« Child's genes - Grandparent's genes | Parents'
genes

- But: Child's genes # Grandparent's genes
e Ability of Team A -L Ability of Team B

- But: Ability of Team A #/ Ability of Team B |
Outcome of Avs. B game

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Independence saves space
 |If Aand B are independent given C:

P(A,B,C) =P(C,AB)
- P(C)P(A|C)P(BJA,C)
- P(C)P(A[C)P(B|C)
 Instead of having a full joint probability table
for P(A,B,C), we can have a table for P(C) and
tables P(A|C=c) and P(B|C=c) for each c.
- Even for binary variables this saves space:
. 2°=8vs.2+2+2=86.

- With many variables and many independences
you save a lot.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Chain Rule — Independence - BN

Chainrule: P(A,B,C,D)=P(A)P(B|A)P(C|4,B)P(D|A,B,C)

"
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But order can matter

P(A,B,C) = P(C,A,B)
* P(A)P(B|A)P(C|A,B) = P(C)P(A|C)P(B|A,C)

* And if A and B are conditionally independent
given C:

1.P(A,B,C) = P(A)P(B|A)P(C|A,B)
2.P(C,A,B) = P(C)P(A|C)P(B|C)

1. L 2. (A (&
¢
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Bayes net as a factorization

» Bayesian network structure forms a directed
acyclic graph (DAG).

 |[f we have a DAG G, we denote the parents of
the node (variable) X with Pa_(x) and a value

configuration of Pa_(x ) with pa_(x) :
P<X1,X2,"'/Xn‘G)=HP<Xi|paG<Xi)>/
i=1

where P(x|pa_(x)) are called local probabilities.

- Local probabilities are stored in the conditional
probability tables (CPTs).

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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P

(Sprinkler | Cloudy)

A Bayesian network
P(Cloudy)

Cloudy=no Cloudy=yes
0.5 0.5

P(Rain | Clouqy)

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1

[

Sprinkler

P(WetGrass | Sprinkler, Rain)

Sprinkler Rain WetGrass=yesWetGrass=no
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes (0.90 0.10

Probabilistic Models, Spring 2009
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Causal order recommended

e Causes first, then effects.

e Since causes render direct consequences
independent yielding smaller CPTs

« Causal CPTs are easier to assess by human
experts

 Smaller CPT:s are easier to estimate reliably
from a finite set of observations (data)

e Causal networks can be used to make causal
inferences too.

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 20



Inference in Bayesian networks

* Given a Bayesian network B (i.e., DAG and
CPTs) , calculate P(X|e) where X is a set of
query variables and e is an instantiaton of
observed variables E (X and E separate).

* There is always the way through marginals:

- normalize P(x,e) = Zycdom(Y)

Is a set of all possible instantiations of the
unobserved non-query variables Y.

* There are much smarter algorithms too, but in
general the problem is NP hard (more later).

P(x,y,e), where dom(Y),

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Back to the two-variable case...

Model M1: Model M2: Model M3:
A and B independent A and B dependent A and B dependent
P(A,B) = P(A)P(B) P(A,B) = P(A)P(B|A) P(A,B) = P(B)P(A|B)

@ @ @& 6@
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Equivalence classes

» Equivalence class = set of BN structures
which can used for representing exactly the
same set of probability distributions.

* The "causally natural” version makes it easier
to determine the conditional probabillities.

‘—>‘ P(flu, ns) = P(flu)P(rn | flu)

Probabilistic Models, Spring 2009 Petri Myllymaiki, University of Helsinki 23




The Bayes rule visualized

. P1(AB)=P;(A)P;(B |A) @&—®
.+ P2(AB)=P;(B)P2(A| B) @—@

« Assume P4(A) and P4(B | A) fixed
» P2(A,B)=P4(AB) if:

Pa(A|B) =P1(A)P1(B | A)/P2(B)

1(
2(

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 24



Another example

* From Bayes’ rule, it follows that
P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(DJ|A,B,C)

A=)

¥ /9D
Assume: P(C|A,B)=P(C|A) and P(D|A,B,C)=P(D|B,C)

D
P(x; X, ..., X H P(x|pas(x;)) 9

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki

25




IS heeded

2
B C
2 5/’

And the pointis...?

« simple conditional probabilities are easier to
determine than the full joint probabilities

* In many domains, the underlying structure
corresponds to relatively sparse networks, so
only a small number of conditional probabilities

P(+a,+b,+c,+d)=

P(—a,+b,+c,+d)=P(—a)

P(_a!_b!+c!+d)=P(_a) P(_b |_a)
P(-a,~b,~c,*+d)=P(-a)P(-b|-a)P(-c|-a)
P(-a,~b,~c,~d)=P(~a)P(-b|-a)P(~c|-a)P(~d]-b,~c)
P(+a,~b,—c,—d)=P(+a)P(—b|+a)P(~c|+a)P(—d|-b,—c)

Probabilistic Models, Spring 2009

Petri Myllymiki, University of Helsinki
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PB) P(S|F,T)
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Building a Bayesian Network

P(S=yes|T=none) = 0.0

P(T=none) = 0.003 P(S=no|T=none) =1.0
P(T=click)= 0.001
P(T=normal)= 0.996 P(S=yes|T=click) = 0.02

P(S=no|T= click) = 0.98

P(S=yes|T=normal) = 0.99

P(S=no|T=normal) = 0.03

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Missing Arcs Encode Conditional
Independence

=

0(T=none) = 0.003
n(T=click)= 0.001 p(G=not empty) = 0.995
n(T=normal)= 0.996 p(G=empty) = 0.005

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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A Modular Encoding of a Joint

Distribution

BIF) P(B)

P(T|B,F)=P(T|B)
P(G|F,B,T)=P(G|F,B)
P(S|F,B,T,G)=P(S|F,T)
P(F,B,T,G,S)

= P(F) P(BIF) P(T|B,F) P(G|F,B,T) P(S|F,B,T,G)
= P(F) P(B) P(T|B) P(G|F,B) P(S|F,T)
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Bayesian networks:
the textbook definition

* A Bayesian (belief) network representation for a probability
distribution P on a domain (X,,...,X ) is a pair (G,©), where G

IS a directed acyclic graph whose nodes correspond to the
variables X,,...,X , and whose topology satisfies the

following: each variable X is conditionally independent of all
of its non-descendants in G, given its set of parents pa,, and

no proper subset of pa, satisfies this condition. The second
component © is a set consisting of all the conditional
probabilities of the form P(X|pa,). -

Pt

O = {P(+a), P(+b|+a), P(+b|-a), P(+c|+a), P(+c|-a), P(+d|
+b,+c), P(+d|-b,+c), P(+d|+b,-c), P(+d|-b,-c)}
N ¥
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Markov conditions
* Local (parental) Markov condition

- Xis independent of its non-descendants
given its parents.

 Another local Markov condition

- X is independent of any set of other
variables given its parents, children and
parents of its children (= Markov blanket)

e Global Markov Condition

- Xand Y are dependent given Z, iff they are
d-separated by Z

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki




. ocal Markov conditions visualized

 From Russell & Norvig's book:

”X'is conditionally independent "X is conditionally independent
_Of its non-descendants, given of all the other variables, given
its parents” its Markov blanket”

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 33



d-Separation (Pearl 1987)

* Theorem (Verma): X and Y are d-separated
by Z implies X1 Y|Z.
* Theorem (Geiger and Pearl): If X and Y are

not d-separated by Z, then there exists an
assignment of the probabilities to the BN

such that (XL Y| Z) does not hold.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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d-Separation

* Atrailin a BN is a a cycle-free sequence
(path) of edges in the corresponding
undirected graph (the skeleton)

* Anode x is a head-to-head node (a "v-
node”) along a trail if there are two

consecutive arcs Y — X and X «— Z on

2

that trail:

ead-to-nead node

Probabilistic Models, Spring 2009
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* Nodes X and Y are by nodes Z
along a trail from X to Y if

- every head-to-head node along the trail is in Z
or has a descendant in Z

- every other node along the trail is not in Z

Nodes X and Y are by nodes Z if they
are not d-connected by Z along any trail from Xto Y

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki 36
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Explaining Away (selection bias,
Berkson's paradox)

If the car doesn't start, hearing the engine turn over
makes no fuel more likely.
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Explaining away. another example

Cat in house P(A=1)=0.05

P(B=1)=0.05

P(C=1|A=0,B=0)=0.001
P(C=1|A=1,B=0)=0.95
Runnlng nose Scratch

P(C=1|A=0,B=1)=0.95
P(C=1|A=1,B=1)=0.99
P(D=1|B=1)=0.99
P(D=1|B=0)=0.1

urniture

» Given C=1, the probability of A=1 is about 51%, and the probability
of B=1 is also about 51%

« Given C=1 and D=1, the probability of A=1 goes down to 13% while
the probability of B=1 goes up to 91%

* Details: see pages 53-56 of the report Bayes-verkkojen
mahdollisuudet
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Types of connections

* There can be three types of connections on
a trail:

- Serial: X—Z-=Y
« Blocked at Z if Z known
- Diverging: X«—Z—Y
« Blocked at Z if Z known
- Converging (head-to-head): X—»Z<Y

« Blocked at Z UNLESS Z or any of its
descendants known

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 39



Reading out the dependencies

* The Bayesian network on the right represents the
following list of dependencies:

- A and B are dependent on each other no matter what we
know and what we don't know about C or D (or both).

- Aand C are dependent on each other no matter what we
know and what we don't know about B or D (or both).

- B and D are dependent on each other no matter what we
know and what we don't know about A or C (or both).

- C and D are dependent on each other no matter what we
know and what we don't know about A or B (or both).

- Aand D are dependent on each other if we do not know
both B and C.

- B and C are dependent on each other if we know D or if we
do not know D and also do not know A.

P
2 A
0)

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki

40



Printer Troubleshooter (W '95)
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Equivalent Network Structures

Two network structures for domain X are independence
equivalent if they encode the same set of conditional
Independence statements
Example:

H——@ ) XTEZIY

OSONO

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Equivalent network structures

* Verma (1990): Two network structures are
independence equivalent if and only if:

- They have the same skeleton
- They have the same v-structures

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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