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On learning and inference
● Assume n binary random variables X1,...,Xn

● A joint probability distribution P(X1,...,Xn)
● Inference:
– compute the conditional probability distribution for the thing you want 

to know, given all that you know, marginalizing out all that you don’t 
know and don’t want to know

– In pricinple exponential, requires O(2n) operations
– Can be simplified if the joint distribution factorizes by indepencence: 

P(A,B)=P(A)P(B)
● Learning: 
– learn the model structure: what is (conditionally) independent of what 
– learn the parameters defining the ”local” distributions

● Supervised learning: construct directly a model for the 
required conditional distribution, without forming the joint 
distribution first
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Probabilistic reasoning
● n (discrete) random variables X1,...,Xn

● joint probability distribution P(X1,...,Xn)
● Input: a partial value assignment Ω,

      Ω =< X1, X2=x2, X3, X4=x4, X5=x5, X6,...,Xn>
● Probabilistic reasoning: 

− compute P(X=x| Ω) for all X not instantiated in Ω, and 
for all values of each X (the marginal distribution), OR:

− find a MAP (maximum a posterior probability) 
assignment consistent with Ω

− N.B. These are not the same thing!
● Bayesian networks: a family of probabilistic models and 

algorithms enabling computationally efficient probabilistic 
reasoning
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Bayesian networks: a ”Billion 
dollar” perspective

“Microsoft’s competitive advantage, he [Gates] 
responded, was its expertise in “Bayesian networks”. 
Ask any other software executive about anything 
“Bayesian” and you’re liable to get a blank stare. Is 
Gates onto something? Is this alien-sounding 
technology Microsoft’s new secret weapon?”

(Leslie Helms, Los Angeles Times, October 28, 1996.)
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What do Bayesian networks 
have to offer?

● encoding of the covariation between “input” variables 
- BN can handle incomplete data sets

● allows one to learn about causal relationships 
(predictions in the presence of interventions)

● natural way of combining domain knowledge and data 
as a single model

● Computationally efficient inference algorithms for 
multi-dimensional domains



 Probabilistic Models, Spring 2009  Petri Myllymäki, University of Helsinki 9

Bayesian networks: basics

● A Bayesian network is a model of probabilistic 
dependencies between the domain variables. 

● The model can be described as a list of 
(in)dependencies, but is is usually more convenient to 
express them in a graphical form as a directed acyclic 
network.

● The nodes in the network correspond to the domain 
variables, and the arcs reveal the underlying 
dependencies, i.e., the hidden structure of the domain of 
your data.

● The ”quantitative strengths” of the dependencies are 
modeled as conditional probability distributions (not 
shown in the graph).

A

B C

D
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Bayesian networks?

● A very poor name, nothing Bayesian per se
● A parametric probabilistic model that

− can be used for Bayesian inference (or not)
− can be learned via Bayesian methods (or not)
− is conveniently represented as a graph (a 

probabilistic graphical model)

● A better name: directed acyclic graph (DAG)
● (Even better: acyclic directed graph)
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The two-variable case

● Assume two binary (Bernoulli distributed) 
variables A and B

● Two examples of the joint distribution P(A,B):

B=1 B=0 P(A)

A=1 0.08 0.02 0.10

A=0 0.72 0.18 0.90

P(B) 0.80 0.20

P(A,B)=P(A)P(B) P(A,B)≠P(A)P(B)

We only need the 
marginals P(A) and P(B)!

We need the full table 
(or: P(A,B)=P(A)P(B|A))

B=1 B=0 P(A)

A=1 0.08 0.02 0.10

A=0 0.18 0.72 0.90

P(B) 0.26 0.74
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Independence
● If P(A,B)=P(A)P(B), A and B are said to be 

independent

● Note that this also means that P(A | B) = P(A) (and: 
P(B | A) = P(B))

● If A and B are not independent, they are dependent

● Independe can be used to separate from all joint 
distributions P(A,B) the subset where the 
independence holds

● Independence simplifies (constrains) things:

− A ┴ B:  subset of distributions
− not A ┴ B:  all distributions

●
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Types of independence
● if P(A=a,B=a) = P(A=a)P(B=b) for all a and b, 

then we call A and B (marginally) independent.
● if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c) 

for all a and b, then we call A and B 
conditionally independent given C=c.

● if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c) 
for all a, b and c, then we call A and B 
conditionally independent given C.

● P A ,B=P A P B implies

P A∣B=
P A ,B
P B

=
P A PB

P B
=P A 
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Examples

 

● Amount of Speeding fine ┴ Type of car | Speed

− But: Amount of Speeding fine ┴/// Type of car
● Lung cancer ┴ Yellow teeth | Smoking

− But: Lung cancer ┴/// Yellow teeth 
● Child's genes ┴ Grandparent's genes | Parents' 

genes

− But: Child's genes ┴/// Grandparent's genes
● Ability of Team A  ┴ Ability of Team B

− But: Ability of Team A  ┴/// Ability of Team B | 
Outcome of A vs. B game
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Independence saves space
● If A and B are independent given C: 
● P(A,B,C) = P(C,A,B)

= P(C)P(A|C)P(B|A,C)
= P(C)P(A|C)P(B|C)

● Instead of having a full joint probability table 
for P(A,B,C), we can have a table for P(C) and 
tables P(A|C=c) and P(B|C=c) for each c. 
− Even for binary variables this saves space:

•  23 = 8 vs. 2 + 2 + 2 = 6. 

− With many variables and many independences 
you  save a lot.
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Chain Rule – Independence - BN
Chainrule : P A ,B ,C , D=P AP B∣AP C∣A , BP D∣A , B ,C 

A B C D

A B C D

A
B

C

D

Independence : P A , B ,C , D=P AP BP C∣A , BP D∣A ,C 

Bayesian
Network
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A

But order can matter 
●P(A,B,C) = P(C,A,B)

● P(A)P(B|A)P(C|A,B) = P(C)P(A|C)P(B|A,C)
● And if A and B are conditionally independent 
given C:

1.P(A,B,C) = P(A)P(B|A)P(C|A,B)
2.P(C,A,B) = P(C)P(A|C)P(B|C)

C

B A

C

B1. 2.
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● Bayesian network structure forms a directed 
acyclic graph (DAG).

● If we have a DAG G, we denote the parents of 
the node (variable) X

i
 with Pa

G
(x

i
) and a value 

configuration of Pa
G
(x

i
) with pa

G
(x

i
) : 

Bayes net as a factorization

P x1,x2, ... , xn∣G=∏
i=1

n

P xi∣paGxi,

where P(x
i
|pa

G
(x

i
)) are called local probabilities.

− Local probabilities are stored in the conditional 
probability tables (CPTs).
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A Bayesian network

Cloudy

Rain

Cloudy=no Cloudy=yes
0.5 0.5

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1 Sprinkler

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2

Sprinkler Rain WetGrass=yesWetGrass=no
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10

Wet Grass

P(Cloudy)

P(Sprinkler | Cloudy)
P(Rain | Cloudy)

P(WetGrass | Sprinkler, Rain)
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Causal order recommended
● Causes first, then effects.
● Since causes render direct consequences 

independent yielding smaller CPTs
● Causal CPTs are easier to assess by human 

experts
● Smaller CPT:s are easier to estimate reliably 

from a finite set of observations (data)
● Causal networks can be used to make causal 

inferences too.
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Inference in Bayesian networks
● Given a Bayesian network B (i.e., DAG and 

CPTs) , calculate P(X|e) where X is a set of 
query variables and e is an instantiaton of 
observed variables E (X and E separate).

● There is always the way through marginals:

− normalize P(x,e) = Σ
yϵdom(Y)

P(x,y,e), where dom(Y), 

is a set of all possible instantiations of the 
unobserved non-query variables Y.

● There are much smarter algorithms too, but in 
general the problem is NP hard (more later).
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Back to the two-variable case...

A

Model M1:

A and B independent

P(A,B) = P(A)P(B)

Model M2:

A and B dependent

P(A,B) = P(A)P(B|A)

Model M3:

A and B dependent

P(A,B) = P(B)P(A|B)

B A B A B
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Equivalence classes
● Equivalence class = set of BN structures 

which can used for representing exactly the 
same set of probability distributions.

● The ”causally natural” version makes it easier 
to determine the conditional probabilities.

runny
noseflu

runny
nose flu

P(flu, ns) = P(flu)P(rn | flu)

P(flu, rn) = P(rn)P(flu| rn)
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The Bayes rule visualized

● P1(A,B)=P1(A)P1(B | A)

● P2(A,B)=P2(B)P2(A | B)

● Assume P1(A) and P1(B | A) fixed

● P2(A,B)=P1(A,B) if:

P2(A | B) = P1(A)P1(B | A)/P2(B)

A B

A B



 Probabilistic Models, Spring 2009  Petri Myllymäki, University of Helsinki 25

Another example
● From Bayes’ rule, it follows that

P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(D|A,B,C)

A B C D

A

B C

D

A B C D

Assume: P(C|A,B)=P(C|A) and P(D|A,B,C)=P(D|B,C)

P x1,x2, ... , xn∣G=∏
i=1

n

P xi∣paGxi
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And the point is…?
● simple conditional probabilities are easier to 

determine than the full joint probabilities
● in many domains, the underlying structure 

corresponds to relatively sparse networks, so 
only a small number of conditional probabilities 
is needed

P(+a,+b,+c,+d)=P(+a)P(+b|+a)P(+c|+a)P(+d|+b,+c)
P(–a,+b,+c,+d)=P(–a)P(+b|–a)P(+c|–a)P(+d|+b,+c)
P(–a,–b,+c,+d)=P(–a)P(–b|–a)P(+c|–a)P(+d|–b,+c)
P(–a,–b,–c,+d)=P(–a)P(–b|–a)P(–c|–a)P(+d|–b,–c)
P(–a,–b,–c,–d)=P(–a)P(–b|–a)P(–c|–a)P(–d|–b,–c)
P(+a,–b,–c,–d)=P(+a)P(–b|+a)P(–c|+a)P(–d|–b,–c)
. . .

A

B C

D
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A Bayesian Network

BatteryBattery Fuel

GaugeGauge

StartStart

TurnOverTurnOver

P(T|B)

P(G|F,B)

P(S|F,T)

P(B) P(F)
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Building a Bayesian Network

P(T=none) = 0.003
P(T=click)= 0.001
P(T=normal)= 0.996

P(S=yes|T=none) = 0.0
P(S=no|T=none) = 1.0

P(S=yes|T=click) = 0.02
P(S=no|T= click) = 0.98

P(S=yes|T=normal) = 0.97
P(S=no|T=normal) = 0.03

StartStart

-yes-yes

  -no-no

Turn OverTurn Over

-none-none

-click-click

-normal-normal

T S
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Missing Arcs Encode Conditional 
Independence

p(T=none) = 0.003
p(T=click)= 0.001
p(T=normal)= 0.996

p(G=not empty) = 0.995
p(G=empty) = 0.005

GaugeGauge

G
Turn overTurn over

T
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A Modular Encoding of a Joint 
Distribution

P(F,B,T,G,S) 
= P(F) P(B|F) P(T|B,F) P(G|F,B,T) P(S|F,B,T,G)
= P(F) P(B) P(T|B) P(G|F,B) P(S|F,T)

P(B|F)=P(B)

BatteryBattery

P(T|B,F)=P(T|B)

TurnOverTurnOver

P(G|F,B,T)=P(G|F,B)

GaugeGauge

P(S|F,B,T,G)=P(S|F,T)

StartStartFuel

P(F)
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Bayesian networks: 
the textbook definition

● A Bayesian (belief) network representation for a probability 
distribution P on a domain (X1,...,Xn) is a pair (G,ϴ), where G 
is a directed acyclic graph whose nodes correspond to the 
variables X1,...,Xn, and whose topology satisfies the 
following: each variable X is conditionally independent of all 
of its non-descendants in G, given its set of parents paX, and 
no proper subset of paX satisfies this condition. The second 
component ϴ is a set consisting of all the conditional 
probabilities of the form P(X|paX).

ϴ = {P(+a), P(+b|+a), P(+b|-a), P(+c|+a), P(+c|-a), P(+d|
+b,+c), P(+d|-b,+c), P(+d|+b,-c), P(+d|-b,-c)}

A

B C

D

G:
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Markov conditions
● Local (parental) Markov condition

− X is independent of its non-descendants 
given its parents.

● Another local Markov condition 
− X is independent of any set of other 

variables given its parents, children and 
parents of its children (= Markov blanket)

● Global Markov Condition
− X and Y are dependent given Z, iff they are 

d-separated by Z
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Local Markov conditions visualized

● From Russell & Norvig's book:

”X is conditionally independent 
of its non-descendants, given 
its parents”

”X is conditionally independent 
of all the other variables, given 
its Markov blanket”
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d-Separation (Pearl 1987)

● Theorem (Verma): X and Y are d-separated 
by Z  implies  X ┴ Y | Z.

● Theorem (Geiger and Pearl): If X and Y are 
not d-separated by Z, then there exists an 
assignment of the probabilities to the BN 
such that (X ┴ Y | Z) does not hold.
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d-Separation
● A trail in a BN is a a cycle-free sequence 

(path) of edges in the corresponding 
undirected graph (the skeleton) 

● A node x is a head-to-head node (a ”v-
node”) along a trail if there are two 
consecutive arcs Y → X and X ← Z on 
that trail:

Y

X

Z

head-to-head nodehead-to-head node
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d-Separation
● Nodes X and Y are d-connected by nodes Z 

along a trail from X to Y if
– every head-to-head node along the trail is in Z 

or has a descendant in Z

– every other node along the trail is not in Z

Nodes X and Y are d-separated by nodes Z if they 
are not d-connected by Z along any trail from X to Y

http://www.andrew.cmu.edu/user/wimberly/dsep/dSep.html
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Explaining Away (selection bias, 
Berkson’s paradox)

Fuel

StartStart

TurnOverTurnOver

If the car doesn’t start, hearing the engine turn over
makes no fuel more likely.
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Explaining away: another example

● Given C=1, the probability of A=1 is about 51%, and the probability 
of B=1 is also about 51%

● Given C=1 and D=1, the probability of A=1 goes down to 13% while 
the probability of B=1 goes up to 91%

● Details: see pages 53-56 of the report Bayes-verkkojen 
mahdollisuudet

P(A=1)=0.05
P(B=1)=0.05
P(C=1|A=0,B=0)=0.001
P(C=1|A=1,B=0)=0.95
P(C=1|A=0,B=1)=0.95
P(C=1|A=1,B=1)=0.99
P(D=1|B=1)=0.99
P(D=1|B=0)=0.1

A B

D
C

Flu

Running nose

Cat in house

Scratched furniture
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Types of connections 

● There can be three types of connections on 
a trail:
− Serial: X→Z→Y

•  Blocked at Z if Z known   
− Diverging: X←Z→Y

•  Blocked at Z if Z known   
− Converging (head-to-head): X→Z←Y

•  Blocked at Z UNLESS Z or any of its 
descendants known   
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Reading out the dependencies

● The Bayesian network on the right represents the 
following list of dependencies:

– A and B are dependent on each other no matter what we 
know and what we don't know about C or D (or both).

– A and C are dependent on each other no matter what we 
know and what we don't know about B or D (or both).

– B and D are dependent on each other no matter what we 
know and what we don't know about A or C (or both).

– C and D are dependent on each other no matter what we 
know and what we don't know about A or B (or both).

– A and D are dependent on each other if we do not know 
both B and C.

– B and C are dependent on each other if we know D or if we 
do not know D and also do not know A.

A

B C

D
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Printer Troubleshooter (W '95)

Print Output
OK

Correct
 Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On 
and Online

Correct
Local Port

Correct 
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct 
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data 
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate
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Equivalent Network Structures

X Y Z

X Y Z

X Y Z

 X  ┴ Z | Y

Two network structures for domain X are independence
equivalent if they encode the same set of conditional
independence statements

Example:
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Equivalent network structures
● Verma (1990): Two network structures are 

independence equivalent if and only if:
− They have the same skeleton
− They have the same v-structures

W

ZX U

Y W

ZX U

Y

W

ZX U

Y
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