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Inference in Bayesian networks

* Given a Bayesian network B (i.e., DAG and
CPTs) , calculate P(X|e) where X is a set of
query variables and e is an instantiaton of
observed variables E (X and E separate).

* There is always the way through marginals:

- normalize P(x,e) = Zycdom(Y)P(x,y,e), where dom(Y),

Is a set of all possible instantiations of the
unobserved non-query variables Y.

* There are much smarter algorithms too, but In
general the problem is NP hard (more later).

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki




How to generate random vectors
from a Bayesian network

« Sample parents first

Cloudy=no Cloudy=yes _
O.EU y noO.gu y=ye P(C)
/ \ . (0.5, 0,5) — yes
Cloudy |Sprinkler=onSprinkler=off ) P(S|C=yes)
no (05 0.5 Cloudy Rain=yes Rain=no . (0_9, ()_1) — 0N
yes 09 0.1 no (0.2 038
yes 08 02 - P(R | C=yes)
\ / . (0.8,0.2) — no
Sprinkler Rain WetGrass=yesWetGrass=no - P(W | Szon, R=no)
on no 0.90 0.10
on yes (0.9 0.01 e (0.9,0.1) > yes
off no (0.01 0.99
of  yes 00 0.10 « P(C,S,R,W)=P(yes,on,no,yes)
=0.5x0.9x0.2x0.9=0.081
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Some famous (simple) Bayesian
network models

* Nalve Bayes classifier

 Finite mixture model

* Tree Augmented Nailve Bayes
 Hidden Markov Models (HMMs)

Probabilistic Models, Spring 2009

Petri Myllymiki, University of Helsinki




Naive Bayes classifier
P(C)

Class

P(X,IC PX|C) P(X

1 2

C) P(X,|[C) P(X |C)

3 5

® ® ® ® ®

-X are called predictors or indicators

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 5




Naive Bayes Classifier

« Structure tailored for efficient diagnostics
P(C|x1,x2,...,xn).

* Unrealistic conditional independence
assumptions, but OK for the particular query
P(C|x1,x2,...,x ).

n

» Because of wrong independence
assumptions, NB is often poorly calibrated:

- Probabilities P(C|x_,x ,...,x ) way off, but
argmax_P(c|x ,x,...,x ) still often correct.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki



Calculating P(C\x1,x2,...,xn,NB)
» Boldly calculate through joint probability

P(C|xy,...,X,)cP(C,X,,...,x,)=P(C) | | P(x,|C)

* No need to have all the predictors. Having just
set X, of predictors (and not X_):

P(C|xA)ocP(C,XA):Z P(C,x,,xz)

-3 P(O)[1P(x/C)TIP(x/C)

I€A JjEB
O 1Px|C)>. ]] P (xC)
i€A x; JEB
HPX|CHZPX|C O)]P(x|C)
I€A JEB X, €A

Probabilistic Models, Spring 2009 Petri Myllym aki, University of Helsinki
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1

T

P(X,IC)  P(X|C,X.) P(X

2

Tree Augmented Naive Bayes (TAN

P(C)

Class

3 3 5

EEEES

- X_may have at most one other X as an extra parent.

C) PXJC.X)) P(X.IC.X )

)|

Probabilistic Models, Spring 2009

Petri Myllymiki, University of Helsinki
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Calculating P(C|x_,x_,....x ,TAN)

* Again, boldly calculate via joint probability

P(Clxll...,xn)ocP(C,xll...,xn):P(C)f[P(xl.|C,Pa(xl.))

» But missing predictors may hurt more. For
example:

P(C|X )OCP( ) ( 5|C ZP X4|C) ( 5|X4,C>

ZP (x5]C, x,) (X4|C)

ZP (X5C, x,) ZP (%,|C, x3) P(x,|C)

&+ >

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 9




NB as a Finite Mixture Model

 \When NB structure is right, it also makes a nice

(marginal) joint probability model P(X ,X ,...,X
for “predictors”.

)

n

* A computationally effective alternative for
building a Bayesian network for X1,X2,...,X .

« Joint probabillity P(X1,X2,...,Xn) IS represented as

a mixture of K joint probability distributions
P (X, X ,...X)=P (X )P (X)..P(X), where

P (-) = P(-|C=k).

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 10



Calculating with P(X1,X2,...,XH\NB)

 Joint probabillity a simple marginalization:

* |[nference .
P(X|e)xP(e,X)=) P(e,X,C=k)
k=1

k=1

K

=Y P(C=k)]|] P(X|/Cc=Kk)|] P(e|C=k)
k=1 X,eX e.ce

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Hidden Markov Models

 Models observations about a system that

changes its state.

o

~ Transition model

No colliding arcs, thus
independences are

P(X.,,1X) easy to determine.

NB! Models do not depe
on time t.

Sensor model

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 12
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Locationgpositioning problem




The positioning problem

* Given some location-dependent observations
O, measured by a mobile device, determine the
location L of the device

 Why is this a good research problem?

- The goodness of different solutions is extremely
easy to validate (just go to a known location and
test)

- The results have immediate practical applications

« Location-based services (LBS)
« FCC Enhanced 911:

- Network-based solutions: error below 100 meters for 67 percent of calls, 300
meters for 95 percent of calls

- Handset-based solutions: error below 50 meters for 67 percent of calls, 150
meters for 95 percent of calls

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 15




Cell ID

-
variable cell-size:

n. 50 m (indoors) == 30 km {rural areas)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 16



- errors > 500m common I
+ si

Cell-id jn urban positioning

A

r—

\_ —-

3
m

‘ |




Cell ID errors

& tmic - GSview —1O] =]
File Edit ©ptions “Wiew Orientation Media Help
S i 7] [EFd ] [« ] (B ==

CeELL-TID [
S000m

S030m

4000m

3030m

B
‘ L - i ":

] o35
2000m W T e 7
! :'-51‘:[#%:1 II| ___,_,—'——__'_.l:l i |-
'--.-. / I II| f
- wa
1000m e 4 -
. G\‘a. I". |'
Wil &
1 m
a = o113 = - 41
UITI 1 1 1 1
oam 1000m 2000m 2000m 4000 m S5000m
£l I LI_I
File: tmc 188, 326pt  Pages: "11'" 11 of 13
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Enhanced Observed Time
Difference (E-OTD)

#I hyperbola: d3-d2 = constant

ﬁ. o Hﬁ-H_ hyperbola; d1-d2 = constant

Pr babﬂist\ic Models, Spring 2009 Petri Myllymaiki, University of Helsinki
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Problems with E-OTD
INn ufban positioning

- multi-paths
- no line of sight to BS
- extra hardware
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The signal propagation
approach

Reality

-~ Universal model for location estimation - Universal model for location estimation

o Max - Max

Min Hin
Show route | Show coverage | RTﬂall Start SG | Save | Sahara | Load | Propagate | Contour plot | Contour line | Data contour | ﬁny!l’l \: A Diff | AP: LAN-AP-04 é‘ Quit Show route | Show coverage | RTdat | Start SG | Save | Sahml Load | Prapagate | Contour plot | Contour line | Data contour | Finger : A Diff | AP: LAN-AP-04 él Quit

werage werage

~ Propag ~ Propag
o ®)
Tt /
i
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Empirical modeling in
urban positioning

L ll ﬂh

+accurate L
+handset or network based
-calibration measurements required




A probabilistic approach to positioning
P(O|L)P(L)

P(L|O)=

P(O)

- A probabilistic model assigns a probability for
each possible location L given the
observations O.

- P(O | L) is the conditional probability of obtaining
observations O at location L.

- P(L) is the prior probability of location O. (Could
be used to exploit user profiles, rails etc.)

- P(O) is just a normalizing constant.

 How to obtain P(O | L)? = Empirical
observations + machine learning

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Tracking with Markov models

* Typically we have a sequence (history) of observations
O,,...,0_, and wish to determine P( L_| O")

« Assumption: P(O, | L)) are known, and given location L,
the observation O, 1s independent of the rest of the history

* The model: a hidden Markov model (HMM) where the
locations L, are the hidden unobserved states

 The transition probabilities P(L, | L, ;) can be easily
determined from the physical properties of the moving

object
26
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One more assumption

 The observation at time ¢ typically consists of
several measurements (e.g., strengths of
signals from all the transmitters that can be
heard)

 |f the wireless network is designed in a
reasonable manner (the transmitters are far
from each other), it makes sense to assume
that the individual observations are
iIndependent, given the location

L,
e The “Naive Bayes” model / J \
0, O,, cee O,

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 27



Tracking as probabilistic
inference

* As our hidden Markov model is a tree, we can compute
the marginal of any L, given the history O", in linear

time by using a simple forward-backward algorithm

* Alternatively, we can compute the maximum probability
path L ,....L_given the history (this is known as the
Viterbi algorithm)

« Kalman filter: all the conditional distributions of the
HMM model are normal distributions (linear
dependencies with Gaussian noise)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Recursive tracking

Assume that P(L__ | O™') has been computed.

Our model defines the transition probabilities P(L, | L.,)
and the local observation probabilities P(O, | L,)

Now P(L, | O") a P(L,, O")
=P, |L_,O0"")PL,_, O™
=P, |L)x, PL,,L,,O0")

o PO,|L) 2 P(L, | L, )PL,, | O™")

Lp-1

With a Kalman filter, the recursive process operates all
the time with Gaussians

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 29
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http://cosco.hiit.fi/demo/manhattan/

114th St)

requirements

Detalls

e Covering downtown Manhattan (10th -

» Data gathering by car
 Modeling: 10 person days
e Target accuracy: less than 911 handset

* Tests using cars

Probabilistic Models, Spring 2009

Petri Myllymiki, University of Helsinki
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Accuracy of NYC Trial 2001

67% | 957% | 98.6%
1600 | |

L

124

188

1415

=151

400

cy

=l _,-o-'-"\J— _rx_,_,—FI—'—'_"‘-\-\.._

% 50 186 150 ragul%; c5
17m 57m

« 20166 points
 tracking; testing done in a car;
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Trials: Manhattan 2002

/J Times Square locationing demo - Microsoft Internet Explorer
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http://www.cs.helsinki.fi/research/cosco/demo/tsq

Challenges

* “real 911" simulation
- No tracking information

- Only up to 60 seconds of signal
measurements

» Target accuracy: “theater level”

* Indoor testing (without indoor
modeling)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 35



Accuracy NYC Trial 2002

67% 95% | 98.6%

40

35

e
N
N
o D e

) 10 20 30 40 50 60 70 80| 90 100 110 120 130 140

27m 85m

- 30 points
- static; testing done by walking;
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Joint probability of a HMM

 Joint probabillity like in Bayesian network

- HMM is a Bayesian network!

t
P(X,,X,,E,,X,,E,,....X,,E,)=P(X,) [ | P(X,X, ,)P(E,X,)
i=1

 Common inference tasks:
- Filtering / monitoring: P(X | e )
- Prediction: P(X _ | e, ), k>0
- Smoothing: P(X | e, ), k<t
- Explanation: P(X | e )

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Calculating P(X | e, ) in HMM

e | ets shoot for a recursive formula:

P(Xt+1|el:t+1):P(Xt+1|et+1lel:t)
OCP<et+1|Xt+1/el:t)P(Xt+1|el:t)

=P(e,,|X,.1)P(X,,,le,.)

e and
P t+1|el -t ZP t+1/Xt|el:t)

_ZP t+1|Xt’el:t)P(Xt|el:t)
_ZP (XX P(xle;.,)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Forward algorithm for P(X | e, )

 Combining formulas we get a recursion

P(Xt+1|el:t+1)OCP(et+1|Xt+1>ZP(Xt+1|xt)P(Xt|el:t)
e So first calculate

P(X1|91>OCP(91|X1)ZP(X1|X0)P(Xo)

 and then
P(X,le, e,)cP(e,|X,) ZP X,|x,)P(x4le;)

( |€1 e, 93)OCP 93|X ZP 3|X2) (X2|91,92)

Probabilistic' Models, Spring 2009 Petri Myllymiki, University of Helsinki 40



Prediction: P(X | e, ), k>0
- P(X . | e, )partof the forward algorithm

e and from that on evidence does not count, and
one can just calculate forward:

P t+2|el -t ZP t+2|Xt+1’el:t)P<Xt+1|el:t)
_ZP t+2|Xt+1 P<Xt+1|el:t>
P(X,, sle;..) ZP (X, 31X, P (X, le; )

_ZP t+3|Xt+2 P(Xt+2|el:t)

Probabilistic Models, Spring 2009 Petri Myllymdki, University of Helsinki
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Smoothing: P(X | e, ), k<t
. Obvious move: dividee,  toe and € ...

P(X,le,..)=P(X,le|.;.€x.1.;)
P (X,le;. )P(e; . 1.4X . e1.r)
=P(X,le,..)P(e,..4X;)

P<ek+1:t|Xk):zP<Xk+1/ek+1:t|Xk)
:ZP (Xp 11X ) Pl q .ol Xo i1, X0)

o Z P Xk+1 Xk>P(ek+1'ek+2:t|Xk+1)

_ZP (X1l X ) Ple X 1) Pley g X 1)

* and the flrst (last) step:

( t|Xt 1 ZP X et|Xt 1 ZP t|X Xt 1) (Xt|Xt—1)

_ZP t|X t|Xt 1)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 42




P(e, ./X;)

...and finally:

ZZP(XR+1’ek+1:t|Xk)
:ZP<XI<+1Xk)P(ek+1:t|Xk+1/Xk)
:ZP<XR+1Xk)P(ek+1/ek+2:t|Xk+1)

:ZP<XI<+1Xk)P(ek+1|Xk+1>P<ek+2:t|xk+1)

« Smoothing the whole sequence takes O(t*) time
» Forward-backward algorithm: O(t)

* Finding the most probable sequence works in the
same manner (the Viterbi algorithm / Viterbi path)

Probabilistic Models, Spring 2009

Petri Myllymiki, University of Helsinki
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The Viterbi algorithm

* \Want to compute:

maxy x P(X,,..,X e, ...e,)

=max y maxy, , P(X,, .., X, .X,e,..e,)
* Recursion:
max, o P(X,,.. X, X]e, . e)=maxy, , P(X,,. X, ,,X,e,..e,
=max,  Ple|X, X\, ...X, ,e,..,e, )JP(X, X, . X, e,..ce,_)
=maxy y Ple|X,)P(X,|X,...X, e, ..e )P(X, .. X, e,..e,_)
=Ple,|X, )max, P(X,|X,  )max, , P(X,,...X,,.X, \le...e_)
* More:

- see e.g. Russel & Norvig, Chapter 15.2.

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Exact infrence in singly-
connected BNs

 a singly connected BN = polytree
(disregarding the arc directions, no two

nodes can be connected with more than
one path).

LA \ Aﬁ
2NN / L
v 9

4 —J

singly-connected multi-connected

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 45




Probabilistic reasoning in singly-
connected BNs

’ (X|E)OCP(X £, E)OCP<E_|X)P<X|E+>
Y HP Y|X

(Ey|X) ZP E,|Y)P(Y|X)

‘ ‘ (X|E, ;p X|Z)P(Z|E,,)

» a computationally efficient message-
passing scheme: time requirement linear in
the number of conditional probabilities in ©.

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 46



Probabilistic reasoning Iin
multi-connected BNs

» generally not computationally feasible as the

problem has been shown to be NP-hard (Cooper
1990, Shimony 1994).

* exact methods:
/'&

- clustering
- conditioning

— variable elimination . } ‘

* approximative methods:
- stochastic sampling algorithms
- loopy belief propagation

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 47




Variable elimination: a simple
example

PD=§:PABCD)

A,B,C

—LLLP P(B|A4)P(C|B)P(DI|C)

_ZZPCw MCZP P(B|A)
—ZPMCZPQBZP P(B|A)

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Approximate inference In
Bayesian networks

* How to estimate how probably it rains next
day, if the previous night temperature is
above the month average?

- count rainy and non rainy days after warm nights
(and count relative frequencies).

* Rejection sampling for P(X]e) :
1.Generate random vectors (x e,y ).

r r r

2.Discard those those that do not match e.
3.Count frequencies of different x and normalize.

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki
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Rejection sampling, bad news

e Good news first:

- super easy to implement
 Bad news:

- if evidence e is improbable, generated random
vectors seldom conform with e, thus it takes a
long time before we get a good estimate P(X|e).

- With long E, all e are improbable.

e So called likelihood weighting can alleviate
the problem a little bit, but not enough.

Probabilistic Models, Spring 2009 Petri Myllymiki, University of Helsinki 50



Gibbs sampling

* Given a Bayesian network for n variables
X UEUY, calculate P(X|e) as follows:

N = (associative) array of zeros
Generate random vector Xx,Y.
Wii | e True:

for Vin X Y:

generate v from P(V | MarkovBl anket (V))
replace v in x,Y.

N x] +=1

print nornmalize(N x])

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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P(X|mb (X))

=P (X|mb(x), Rest)
:P(X,mb(X),Rest)

P( X[ mo( X)) ?

P(mb(X),Rest)

«P(All)

— H P(X;|Pa(X;))

X, eX

=P (X|Pa(X

«P(X|Pa(X

) 11 P(ClPa(C)) ]l P(R|Pa(R))
) 11 P(ClPa(C))

Cech(X) ReRestUPa (V)

Cech(X)
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Why does it work

» All decent Markov Chains g have a unique
stationary distribution P* that can be
estimated by simulation.

» Detailed balance of transition function g and

* Proposed g, P(VImb(V)), and P(X|e) form a
detailed balance, thus P(X]|e) is a stationary
distribution, so it can be estimated by
simulation.

state distribution P* implies stationarity of P*.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Markov chains
stationary distribution

* Defined by transition probabilities q(x—x")
between states, where x and x' belong to a
set of states X.

 Distribution P* over X is called stationary
distribution for the Markov Chain q, if
P*(x)=2_ P (x)a(x—X).

» P*(X) can be found out by simulating Markov
Chain g starting from the random state x .
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Markov Chain
detailed balance

e Distribution P over X and a state transition
distribution q are said to form a detailed
balance, if for any states x and x/,
P(x)q(x—x') = P(x")g(x'—Xx), i.e. it is equally
probable to witness transition from x to x' as
it is to witness transition from x' to x.

 |If P and g form a detailed balance,
2. P(x)a(x—x’) = 2 P(X)q(X'—X) =
P(x)2. a(x'—x) =P(x’), thus P is stationary.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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Gibbs sampler as Markov Chain

 Consider Z=(X,Y) to be states of a Markov

chain, and q((v,z, ))—(V',z, ))=P(vi|z, , e), where

Z  =Z-{V}. Now P*(Z)=P(Z|e) and q form a
detailed balance, thus P* is a stationary
distribution of q and it can be found with the
sampling algorithm.
- P*(z)q(z—2') = P(z|e)P(V|z,, e)

=P(v,z, |e)P(Vi]z,, e)

= P(vlz,,e)P(z, |e)P(V]z,, e)

=P(vlz, ,e)P(V, z, |e) = q(z'—z)P*(Z'), thus balance.

Probabilistic Models, Spring 2009 Petri Myllymaéki, University of Helsinki
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So let us play....

/} B-Course - Microsoft Internet Explorer

J File Edit ‘“iew Favoites Toolz  Help

J@.Q,@ﬁ Q @ I B 9 #H .
Back FEnriard Stop  Refresh  Home Search Fawortes  Histamy hdail Print Edit

J Address IE hittp: #/b-course. cs. helzinki i

B-Course

home | library

Welcome to B-Course

B-Course is a web-based inferactive futorial on Bayesian modeling, in particular
depandence modeling. However, if is maore than just a futorial It is also a free data
analvsic tool that makes i possible for you o use your own daia as example data for
the tutorial. Consequently B-Course can be used as an analysis tool for any ressarch
where dependence modeling based on data is of interest. B-Course can be freely used |
for educationdl and research purgoeses anly. (Disclaimer)

B-Course facilities

B-Course will guide you through the trail of dependency modeling. Tou will leam about
Bayesian modeling and mference using your own data as an example. In case you do not {yet)
have any data sets to analyze, you can take a lock on a model we have prepared, or you can select ameng public data
sets provided in B-Course material and use the selected data as yvour example.

Along the trail you will find references to the B-Course lbrary for more detaled information. We advise you to study
those texts, because they are vital for truly understanding what 15 going on i the analysis. When you famihanze yourself
with the background information, you can use B-Course as any other software tool to help you in the analysis of your
data. If you publish the results, we as the designers of B-Course would appreciate that you acknowledge that the results

were obtained by using B-Course.

» Read about the soals of B-Course

Begin dependence modeling

|@ Done

’_’_ 25, Local intranet
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Petri Myllymiki, University of Helsinki
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