

Aspects in learning

- Learning the parameters of a Bayesian network
 - Marginalizing over all all parameters
 - Equivalent to choosing the expected parameters
- Learning the structure of a Bayesian network
 - Marginalizing over the structures not computationally feasible
 - Model selection

Learning the parameters

- Given the data D, how should I fill the conditional probability tables?
- Bayesian answer:
 - You should not. If you do not know them, you will have a priori and a posteriori distributions for them.
 - They are many, but again, the independence comes to rescue.
 - Once you have distribution of parameters, you can do the prediction by model averaging.
 - Very similar to Bernoulli case.

Probabilistic Models, Spring 2009

Petri Myllymäki, University of Helsinki

Likelihood $P(D|\Theta,G)$

• For one data vector it was:

$$P(x_{1,}x_{2,}...,x_{n}|G) = \prod_{i=1}^{n} P(x_{i}|pa_{G}(x_{i})), \text{ or}$$
$$P(d_{1}|G,\theta) = \prod_{i=1}^{n} \theta_{d_{1i}|pa_{1i}}, \text{ where } d_{1i} \text{ and } pa_{1i} \text{ are the}$$
value and the parent configuration of the variable *i* in data vector *d*

$$P(d_{1}, d_{2}, \dots, d_{N} | G, \theta) = \prod_{j=1}^{N} \prod_{i=1}^{n} \theta_{d_{ji} | pa_{ji}} = \prod_{i=1}^{n} \prod_{k=1}^{r_{i}} \prod_{j=1}^{q_{i}} \theta_{ik|j}^{N_{ijk}},$$

where N_{ijk} is the number of data vectors with parent configuration j when variable i has the value k, r_i and q_i are the numbers of values and parent configurations of the variable i.

Probabilistic Models, Spring 2009

Maximum likelihood

 Since the parameters are occur separately in likelihood we can maximize the terms independently:

$$P(D|G,\theta) = \prod_{i=1}^{n} \prod_{k=1}^{r_i} \prod_{j=1}^{q_i} \theta_{ijk}^{N_{ijk}} \implies \hat{\theta}_{ijk} = \frac{N_{ijk}}{\sum_{i=1}^{r_i} N_{iik}}$$

- So you simply normalize the rows in the sufficient statistics tables to get ML-parameters
- But these parameters may have zero probabilities:
 - not good for prediction; hear the Bayes call

Probabilistic Models, Spring 2009

Petri Myllymäki, University of Helsinki

k' = 1

Learning the parameters - again

- Given the data D, how should I fill the conditional probability tables?
- Bayesian answer:
 - You should not. If you do not know them, you will have a priori and a posteriori distributions for them.
 - They are many, but again, the independence comes to rescue.
 - Once you have distribution of parameters, you can do the prediction by model averaging.
 - Very similar to the Bernoulli case.

Prior x Likelihood

• A priori parameters independently Dirichlet:

$$P(\boldsymbol{\Theta}|\boldsymbol{\alpha}) = \prod_{i=1}^{n} P(\boldsymbol{\Theta}_{i}) = \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} P(\boldsymbol{\Theta}_{i|j}) = \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma(\sum_{k=1}^{i} \boldsymbol{\alpha}_{ijk})}{\prod_{k=1}^{r_{i}} \Gamma(\boldsymbol{\alpha}_{ijk})} \prod_{k=1}^{r_{i}} \theta_{ijk}^{\boldsymbol{\alpha}_{ijk}-1}$$

• Likelihood compatible with conjugate prior:

$$P(D|G,\theta) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} \theta_{ijk}^{N_{ijk}}$$

• Yields a simple posterior $P(\Theta|D,\alpha) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} P(\Theta_{ij}|N_{ij},\alpha_{ij}),$ where $P(\Theta_{ij}|N_{ij},\alpha_{ij}) = Dir(N_{ij}+\alpha_{ij})$

• Posterior:
$$P(\Theta|D,\alpha) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\sum_{k=1}^{i} N_{ijk} + \alpha_{ijk})}{\prod_{k=1}^{r_i} \Gamma(N_{ijk} + \alpha_{ijk})} \prod_{k=1}^{r_i} \theta_{ijk}^{N_{ijk} + \alpha_{ijk}-1}$$

• Predictive distribution:

$$P(d|D, \alpha, G) = \int_{\theta} P(d, \theta|D, \alpha) d\theta = \int_{\theta} P(d|\theta) P(\theta|D, \alpha) d\theta$$

$$= \int_{\theta} \prod_{i=1}^{n} P(d_{i}|\theta_{i}) P(\theta_{i}|D, \alpha) d\theta$$

$$= \prod_{i=1}^{n} \int_{\theta_{ipa,d_{i}}} \theta_{ipa_{i}d_{i}} P(\theta_{ipa_{i}d_{i}}|N_{ipa_{i}d_{i}}, \alpha_{ipa_{i}d_{i}}) d\theta_{ipa_{i}d_{i}}$$

$$= \prod_{i=1}^{n} \overline{\theta}_{ipa_{i}d_{i}} = \prod_{i=1}^{n} \frac{N_{ipa_{i}d_{i}} + \alpha_{ipa_{i}d_{i}}}{\sum_{k=1}^{r_{i}} N_{ipa_{i}k} + \alpha_{ipa_{i}k}}$$

Probabilistic Models, Spring 2009

Petri Myllymäki, University of Helsinki

Predictive distribution

This means that predictive distribution

$$P(d|D, \alpha, G) = \prod_{i=1}^{n} \frac{N_{ipa_{i}d_{i}} + \alpha_{ipa_{i}d_{i}}}{\sum_{k=1}^{r_{i}} N_{ipa_{i}k} + \alpha_{ipa_{i}k}}$$

can be achieved by just setting

$$\theta_{ijk} = \frac{N_{ijk} + \alpha_{ijk}}{N_{ij} + \alpha_{ij}}$$

 So just gather counts N_{ijk}, add α_{ijk} to them and normalize.

Probabilistic Models, Spring 2009

Being uncertain about the Bayesian network structure

- Bayesian says again:
 - If you do not know it, you should have an a priori and the a posteriori distribution for it.

$$P(G|D) = \frac{P(D|G)P(G)}{P(D)}$$

- Likelihood P(D|G) is called the *marginal likelihood* and with certain assumptions, it can be computed in closed form
- Normalizer we can just ignore.

Prediction over model structures $P(X|D) = \sum_{M} P(X|M, D) P(M|D)$

- $= \sum_{\underline{M}} \int_{\Theta} P(X|\Theta, M, D) P(\Theta|M, D) d\Theta P(M|D)$
- $\propto \sum_{M} P(X|\overline{\Theta}(D), M) P(D|M) P(M)$
- $= \sum_{M} P(X|\bar{\Theta}(D), M) \int_{\Theta} P(D|\Theta, M) P(\Theta|M) d\Theta P(M)$
- This summation is not feasible as it goes over a super-exponential number of model structures
- Does NOT reduce to using a single expected model structure, like what happens with the parameters
- Typically use only one (or a few) models with high posterior probability P(M | D)

Probabilistic Models, Spring 2009

Averaging over an equivalence class

 Boils down to using a single model (assuming uniform prior over the models within the equivalence class):

$$P(X|E) = \sum_{M \in E} P(X|M, E) P(M|E)$$
$$= |E| P(X|M) \frac{1}{|E|}$$
$$= P(X|M)$$

Model Selection

- Problem: The number of possible structures for a given domain is more than exponential in the number of variables
- Solution: Use only one or a handful of "good" models
- Necessary components:
 - Scoring method (what is "good"?)
 - Search method (how to find good models?)

Good models?

- In marginalization/summation/model averaging over all the model structures, the predictions are weighted by P(M | D), the posteriors of the models given the data
- If have to select one (a few) model(s), it sounds reasonable to use model(s) with the largest weight(s)
- $P(M \mid D) = P(D \mid M)P(M)/P(D)$
- Relevant components:
 - The structure prior P(M)
 - The marginal likelihood (the "evidence") P(D | M)

How to set the structure prior P(M)?

- The "standard" solution: use the uniform prior (i.e., ignore the structure prior)
- Sometimes suggested: P(M) proportional to the number of arcs so that simple models more probable
 - Justification???
- Uniform over the equivalence classes?
 Proportional to the size of the equivalence class?
 What about the nestedness (full networks "contain" all the other networks)...?
- ...still very much an open issue

Computing the marginal likelihood

- Two choices:
 - 1 Calculate the sufficient statistics N_{ijk} and compute P(D | M) directely using the (gamma) formula on the previous slide
 - 2 Use the chain rule, and compute $P(d_1,...,d_n | M)$ = $P(d_1 | M)P(d_2 | d_1,M)...P(d_n | d_1,...,d_{n-1} | M)$ by using iteratively the predictive distribution (slide 18)
- OBS! The latter can be done in any order, and the result will be the same (remember Exercise 2?)!

How to set the hyperparameters α ?

- Assuming...
 - a multinomial sample,
 - independent parameters,
 - modular parameters,
 - complete data,
 - likelihood equivalence,

...implies a certain parameter prior: BDe ("Bayesian Dirichlet with likelihood equivalence")

BDeu

- Likelihood equivalence: two Markov equivalent model structures produce to the same predictive distribution
- Means also that P(D |M) = P(D |M') if M and M' equivalent
- Let $\alpha_i = \sum_i \alpha_{ij}$, where $\alpha_{ij} = \sum_k \alpha_{ijk}$
- BDe means that α_i = α for all i, and α is the equivalent sample size
- An important special case: BDeu ("u" for "uniform"): $\alpha_{ijk} = \frac{\alpha}{q_i r_i}, \ \alpha_{ij} = \frac{\alpha}{q_i}$

Model selection in the Bernoulli case

- Toss a coin 250 times, observe D: 140 heads and 110 tails.
- Hypothesis H_0 : the coin is fair ($P(\Theta = 0.5) = 1$)
- Hypothesis H₁: the coin is biased
- Statistics:
- The P-value is 7%
- "suspicious", but not enough for rejecting the null hypothesis (Dr. Barry Blight, The Guardian, January 4, 2002)
- Bayes:
- Let's assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

$$\frac{P(D|H_1)}{P(D|H_0)} = \frac{\int P(D|\theta, H_1, a) P(\theta|H_1, a) d\theta}{1/2^{250}}$$

Equivalent sample size and the Bayes Factor

A slightly modified example

- Toss a coin 250 times, observe D = 141 heads and 109 tails.
- Hypothesis H_0 : the coin is fair ($P(\Theta = 0.5) = 1$)
- Hypothesis H₁: the coin is biased
- Statistics:
- The P-value is 4,97%
- Reject the null hypothesis at a significance level of 5%
- Bayes:
- Let's assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

$$\frac{P(D|H_1)}{P(D|H_0)} = \frac{\int P(D|\theta, H_1, a) P(\theta|H_1, a) d\theta}{1/2^{250}}$$

Equivalent sample size and the Bayes Factor (modified example)

Lessons learned

- Classical statistics and the Bayesian approach may give contradictory results
- Using a fixed P-value threshold is problematic as any null hypothesis can be rejected with sufficient amount of data
- The Bayesian approach compares models and does not aim at an "absolute" estimate of the goodness of the models
- Bayesian model selection depends heavily on the priors selected
- However, the process is completely transparent and suspicious results can be criticized based on the selected priors
- Moreover, the impact of the prior can be easily controlled with respect to the amount of available data
- The issue of determining non-informative priors is controversial
- Reference priors
- Normalized maximum likelihood & MDL (see www.mdl-research.org)

On Bayes factor and Occam's razor

- The marginal likelihood (the "evidence") P(D | H) yields a probability distribution (or density) over all the possible data sets D.
- Complex models can predict well many different data sets, so they need to spread the probability mass over a wide region of models

Hyperparameters in more complex cases

 Bad news: the BDeu score seems to be quite sensitive to the equivalent sample size (Silander & Myllymäki, UAI'2007)

Figure 1: Number of arcs in the BDeu optimal network for the Yeast data as a function of α .

Figure 2: BDeu scores of different MAP models for the Liver data as a function of α .

So which prior to use?

- An open issue
- One solution: use the "priorless" Normalized Maximum Likelihood approach
- A more Bayesian solution: use the Jeffreys prior
 - Can be formulated in the Bayesian network framework (Kontkanen et al., 2000), but nobody has produced software for computing it in practice (good topic for your thesis!)

- B-Course:
$$\alpha = \frac{1}{2n} \sum_{i=1}^{n} r_i$$

Learning the structure: search

Learning the structure when each node has at most one parent

• The BD score is *decomposable*:

$$\max_{M} P(D|M) = \max_{M} \prod_{i} P(X_{i}|Pa_{i}^{M}, D)$$
$$= \min_{M} \sum_{i} f_{D}(X_{i}, Pa_{i}^{M}),$$
where $f_{D}(X_{i}, Pa_{i}^{M}) = \log P(X_{i}|Pa_{i}^{M}, D)^{-1}$

For trees (or forests), can use the minimum spanning tree algorithm (see Chow & Liu, 1968)

The General Case

- Finding the best structure is NP-hard, if max. number of parents > 1 (Chickering)
- New dynamic programming solutions work up to ~30 variables (Silander & Myllymäki, UAI'2006)
- Heuristics:
 - Greedy bottom-up/top-down
 - Stochastic greedy (with restarts)
 - Simulated annealing and other Monte-Carlo approaches

Simulated Annealing

Measures of utility of learned network:

- Cross Entropy (Gold standard network, learned network)
- Structural difference (e.g. #missing arcs, extra arcs, reversed arcs,...)

Problems with the Gold standard methodology

- Structural criteria may not properly reflect the quality of the result (e.g., the relevance of an extra arc depends on the parameters)
- Cross-entropy (Kullback-Leibler distance) hard to compute
- With small data samples, what is the "correct" answer? Why should the learned network be like the generating network?
- Are there better evaluation strategies? How about predictive performance?

Probabilistic Models, Spring 2009

Petri Myllymäki, University of Helsinki

Handling Missing Data

- Different types of missing data: missing completely a random, missing at random, not missing at random
- Latent (hidden) variable models, like the finite mixture model, always have to deal with hidden data
- We either are interested in the missing data (e.g., we could be interested in the values of the a hidden variable if it corresponds to a clustering of data), or it is treated as "nuicance" (e.g., if the hidden "class" variable is only used as a modeling tool to produce a joint probability distribution on the observed variables)
- In the latter case, a Bayesian attempts to marginalize over the hidden data

The Finite Mixture Model

X₁ X₂ X₃ X₄ X₅

 $P(X_1|C) P(X_2|C) P(X_3|C) P(X_4|C) P(X_5|C)$

P(C

- With hidden data imposed by C, it is computationally infeasible to compute
 - Maximum likelihood parameters
 - Expected parameters (or max. posterior)
 - Marginal likelihood
- Model "structure" learning: how many values for C?

K-Means

- Normally, a geometric clustering algorithm
- A probabilistic version:
 - 1 Start with a random initial clustering c₁,...,c_n
 - 2 Build a model Θ using complete data (Xⁿ,Cⁿ)
 - 3 Using Θ , assign each data vector X *independently* to it's most probable cluster (i.e., find max P(C_i | X_i, Θ) for all i)
 - 4 Go to 2.

Expectation Maximization (EM)

- A "soft" version of K-Means
- Intuitively: data vectors are assigned "fractionally" to each cluster (with the fractions determined by the classification probabilities)
- The new model Θ is computed from semicomplete data (fractional sufficient statistics)
- For HMMs: the Baum-Welch algorithm

K-Means and EM in practice

- Both provably monotonically improve the likelihood (or posterior), so they converge to a local optimum only
- Convergence can be slow
- To get reasonable results, need to repeat several runs from different starting points
- Can be used together: e.g., first run Kmeans, then continue with EM
- Can be used to find good starting points for other heuristics

Structure learning with FMM's

- Can find models Θ using different number of values for the hidden variable (different number of parameters)
- Which Θ to choose? (max. likelihood chooses always the model obtained with the highest number of parameters)
- Computing the marginal likelihood not feasible with the missing data imposed by the hidden variable

 $P(K|D) \propto P(D|K) P(K)$ $P(D|K) = \int P(D|K, \theta) P(\theta|K) d\theta$ $P(D|K, \theta) = \prod_{i} \sum_{k=1}^{K} P(d_{i}|c_{i}, \theta) P(c_{i}|\theta)$

Approximating the marginal likelihood

- Laplace (Gaussian) approximation
- Bayesian Information Criterion (BIC)
- Akaike Information Criterion (AIC)
- Missing data completion
- Stochastic methods (MCMC etc.)
- Variational methods

Laplace's method / Gaussian approximation

 Based on Taylor approximation at the maximum likelihood parameters:

 $-\log P(D|M) \approx -\log P(D|M,\hat{\theta}) - \log P(\hat{\theta}|M) + \frac{d}{2}\log \frac{n}{2\pi} + \log \sqrt{|I(\hat{\theta})|}$

- Here "d" is the number of parameters, "n" is the size of the data, and |*I*(Θ)| is the determinant of the Fisher information matrix at Θ
- A "penalized log-likelihood" criterion: likelihood grows with more complex models, but it compensated by the penalizing factors
- Jeffreys' prior: $P(\theta|M) = \frac{\sqrt{|I(\theta)|}}{\int \sqrt{|I(\theta)|} d\theta}$

BIC and AIC

• BIC:
$$-\log P(D|M) \approx -\log P(D|M, \hat{\theta}) + \frac{d}{2}\log n$$

• AIC:
$$-\log P(D|M) \approx -\log P(D|M, \hat{\theta}) + d$$

- Both converge <u>asymptotically</u> to the marginal likelihood (minus a constant)
- Hence marginal likelihood is also in a sense a penalized maximum likelihood criterion!
- It is a non-trivial problem to determine the "correct" value of d

Missing data completion

- Direct marginalization not feasible:
- $P(X^{n}|M) = \sum_{C^{n}} P(X^{n}, C^{n}|M) = \sum_{C^{n}} P(X^{n}|C^{n}, M) P(C^{n}|M)$ • Cⁿ is like an unknown "parameter"
 - If you cannot marginalize over a parameter, you can try to maximize it

 $P(X^{n}|M) \propto max_{C^{n}}P(X^{n}|C^{n},M)P(C^{n}|M)$

- As the "parameter" Cⁿ is actually data, it is easy to think of reasonable "priors" P(Cⁿ | M)
- With fixed M, Cⁿ can be optimized with Kmeans, EM, or whatever...

Supervised BN Learning

- Parameter learning
 - Generative modeling: Find $arg max_{\theta} P(X^n, C^n | M, \theta)$
 - Discriminative modeling: Find $arg max_{\theta} P(C^n | X^n, M, \theta)$
 - In general, the result is not the same!
- Structure learning
 - Generative modeling: Find arg max_M $P(X^n, C^n|M)$
 - Discriminative modeling: Find arg max_M $P(C^n|X^n, M)$
 - In general, the result is not the same!
 - Marginal conditional likelihood not feasible
 - Kontkanen et al. (UAI 1999): approximations, connection to cross-validation

Optimizing the conditional likelihood

- Bad news: even for the Naive Bayes model, the maximum of the conditional likelihood cannot be presented in closed form
- Good news: For some Bayesian networks (e.g., NB and TAN), the the conditional log-likelihood space is *concave* (Roos et al., MLJ 2005) → it has a single global optimum
- "Supervised" Naive Bayes = logistic regression
- For model structure learning: marginal conditional likelihood not feasible (Kontkanen et al., UAI 1999)

Models with many hidden nodes

- Is it sensible to first learn a Bayesian network (NP-hard) and then try to transform it to a simpler representation for probabilistic inference (NP-hard)?
- How about learning directly structures where inference is easy?

Dynamic Bayesian networks

 Complex Markov models involving temporal dependencies

Probabilistic Models, Spring 2009

Petri Myllymäki, University of Helsinki

Definitions of independence

- Following definitions equivalent for X1⊥ X2 | Z:
 - p(X1,X2 | Z) = p(X1 | Z)p(X2 | Z) whenever p(Z)>0
 - p(X1 | X2,Z) = p(X1 | Z) whenever p(X2,Z)>0
 - p(X2 | X1,Z) = p(X2 | Z) whenever p(X1,Z)>0
 - p(X1,X2,Z) = f(X1,Z)g(X2,Z) for non-negative functions f(·),g(·)
- Definitions symmetric in X1 and X2

Image models

 The graph on the right says that each pixel is influenced only by its neighbors

Undirected graphical models

- Local Markov property:
 - $X \perp (G-nbrs(X)-\{X\}) \mid nbrs(X)$
 - Minimal independence properties to uniquely determine a graph
- Global Markov property:
 - For all X₁,X₂,Z: X₁ ⊥ X₂ | Z iff X₁ is separated in the graph from X₂ by Z.
 - How to test for independence
- Functional form: $P(X_1, ..., X_n) = \prod f_C(X_C)$
 - Product over cliques C (X_C denoting the members of the clique)
 - Definition for purposes of computation

- Local Markov property:
 - E.g.: B ⊥ E,F | A,C,D; C ⊥ A,F | B,D,E;...
- Global Markov property:
 - E.g.: A,B ⊥ E,F | C,D.
- Functional form:
 - P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)

The three properties are equivalent

- Global Markov property implies the local
- Functional form implies the global Markov property
- Hammersley-Clifford theorem: Local Markov property implies the functional form (for discrete variables)

Markov Random Fields

- Undirected graphical models, a.k.a. Markov networks
- Typically use alternative functional form: $P(X) = \frac{1}{Z} \exp\left(\sum_{C} \alpha_{C} f_{C}(X_{C})\right)$
- Sometimes also called the Gibbs distribution
- The cliquewise functions f_C are called clique potentials
- The normalizer Z is called the *partition function*

Mapping a DAG to a MRF is possible...

 Mapping is straightforward if a node and its parents in a DAG belong to the same clique in the MRF

$$\prod_{i} P(X_i | Pa_i) \to \prod_{C} f_C(X_C)$$

- This means that to get the corresponding MRF, we need to "marry" nodes with common children (this is called *moralizing* the graph)
- It follows that inference in undirected graphs is NP-hard too...

...but DAGs and MRFs are not equivalent independence models

• $A \perp D \mid B,C$ and $B \perp C \mid A,D$

• A [⊥] B and A [∦]/ B | C

Final remarks

- The Bayesian framework offers an elegant, consistent formalism for uncertain reasoning
- The basic principle is simple: compute the probability of what you want to know while marginalizing over the other unknown factors
- We have focused on the discrete Dirichlet-multinomial case and directed acyclic graphs (Bayesian networks), but the same principles apply with other probabilistic model families as well
- Graphical models offer a unifying framework where many popular methods are easily understood
 - E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman filter, switching Kalman filter, AR models,...
 - See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html