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Aspects in learning
● Learning  the parameters of a Bayesian 

network
− Marginalizing over all all parameters
− Equivalent to choosing the expected parameters

● Learning the structure of a Bayesian network
− Marginalizing over the structures not 

computationally feasible
− Model selection
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A Bayesian network

Cloudy

Rain

Cloudy=no Cloudy=yes
0.5 0.5

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1

Sprinkler

Cloudy Rain=yes Rain=no
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yes 0.8 0.2

Sprinkler Rain
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10

WetGrass=yesWetGrass=no
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P(Cloudy)

P(Sprinkler | Cloudy)

P(Rain | Cloudy)

P(WetGrass | Sprinkler, Rain)
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Learning the parameters
● Given the data D, how should I fill the 

conditional probability tables?
● Bayesian answer:

− You should not. If you do not know them, you will 
have a priori and a posteriori distributions for them.

− They are many, but again, the independence comes 
to rescue.

− Once you have distribution of parameters, you can 
do the prediction by model averaging.

− Very similar to Bernoulli case.
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A Bayesian network revisited
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A Bayesian network as a 
generative model
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A Bayesian network as a 
generative model
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A Bayesian network as a 
generative model

Cloudy

RainSprinkler

Wet Grass

Θ
S|C=yes

Θ
R|C=yes

Θ
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Θ
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Θ
S|C=no

Θ
R|C=no

Θ
W|S=on,R=no Θ

W|S=off,R=yes
Θ

W|S=off,R=no

● Parameters are 
independent a priori:

P =∏
i=1

n

P i

=∏
i=1

n

∏
j=1

qi

P i∣ j,

where
P i∣ j=Dir 1,,r i

.
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Generating a data set 

● Plate notation:

Cloudy
1 Rain

1

Θ
R|C=yesΘ

C
Θ

R|C=no

Cloudy
2 Rain

2

Cloudy
N Rain

N

. . . . . .

D Cloudy Rain

yes no

no yes
... ... ...

no yes

d
1

d
2

d
N

Cloudy
j Rain

j

Θ
R|C=yesΘ

C
Θ

R|C=no

N
i.i.d, isn't it

α
C

α
R|C=yes α

R|C=no

α
C

α
R|C=yes α

R|C=no
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Likelihood P(D|Θ,G)
● For one data vector it was:

P x1,x2, ... , xn∣G=∏
i=1

n

P xi∣paGx i, or

P d1∣G,=∏
i=1

n

d1i∣pa1i
, where d1i  and pa1i  are the 

 value and the parent confguration of the
 variable i in data vector d1 .

P d1,d2,,dN∣G,=∏
j=1

N

∏
i=1

n

d ji∣pa ji
=∏

i=1

n

∏
k=1

r i

∏
j=1

qi

ik∣ j
N ijk ,

 where N ijk  is the number of data vectors with parent
 confguration j  when variable i has the valuek ,
r i  and qi  are the numbers of values and parent
confgurations of the variable i .
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Bayesian network learning

Cloudy

Rain

Cloudy=no Cloudy=yes

0 0N
C

Sprinkler=onSprinkler=off

0 0

0 0

N
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Sprinkler
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0 0
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N
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N
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0 0
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0 0

0 0
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N

W|S=on,R=no

N
W|S=on,R=yes
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W|S=off,R=yes

Wet Grass

N
C
(q

C
=1, r

C
=2)

N
S|C

(q
S
=2, r

S
=2)

N
R|C

(q
R
=2, r

R
=2)

N
W|S,R

(q
W
=4, r

W
=2)P D∣G,=∏

i=1

n

∏
k=1

r i

∏
j=1

qi

ik∣ j
N ijk

●i picks the variable (table)
●j picks the row
●k picks the column
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Bayesian network learning after 
(C,S,R,W)=[(no, on, yes, yes), (no,on,no,no)]

Cloudy=no Cloudy=yes

0N
C 1+1=2

Sprinkler=onSprinkler=off

0

0 0

N
S|C=no 1+1=2

N
S|C=yes

Rain=yes Rain=no

1 1

0 0

0 1

1 0

0 0

0 0

WetGrass=yesWetGrass=no
N

W|S=on,R=no

N
W|S=on,R=yes

N
W|S=off,R=no

N
W|S=off,R=yes

N
C
(q

C
=1, r

C
=2)

N
S|C

(q
S
=2, r

S
=2)

N
R|C

(q
R
=2, r

R
=2)

N
W|S,R

(q
W
=4, r

W
=2)

P D∣G,=∏
i=1

n

∏
k=1

r i

∏
j=1

qi

ik∣ j
N ijk

●i picks the variable (table)
●j picks the row
●k picks the column
●r

i
, number of columns in table i

●q
i
, number of rows in table i
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Bayesian network learning 
after a while (20 data vectors)

Cloudy=no Cloudy=yes

16 4
 = 16  = 4

N
C   = 20

Sprinkler=onSprinkler=off

10 6 = 16

1 3 = 4
 = 11  = 9

N
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N
S|C=yes

Rain=yes Rain=no

3 13 = 16

4 0 = 4
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N
R|C=no

N
R|C=yes

2 3 = 5

1 5 = 6
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0 1 = 1

WetGrass=yesWetGrass=no
N

W|S=on,R=no

N
W|S=on,R=yes

N
W|S=off,R=no

N
W|S=off,R=yes

N
C

N
S|C

N
R|C

N
W|S,R

P D∣G,=∏
i=1

n

∏
k=1

r i

∏
j=1

qi

ik∣ j
Nijk

●i picks the variable (table)
●j picks the row
●k picks the column
●r

i
, number of columns in table i

●q
i
, number of rows in table i
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Maximum likelihood
● Since the parameters are occur separately in 

likelihood we can maximize the terms 
independently:

P D∣G,=∏
i=1

n

∏
k=1

r i

∏
j=1

qi

ijk
N ijk ⇒ ijk=

N ijk

∑
k'=1

r i

N ijk'

● So you simply normalize the rows in the 
sufficient statistics tables to get ML-parameters.

● But these parameters may have zero 
probabilities:
− not good for prediction;  hear the Bayes call ....
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Learning the parameters - again
● Given the data D, how should I fill the 

conditional probability tables?
● Bayesian answer:

− You should not. If you do not know them, you will 
have a priori and a posteriori distributions for 
them.

− They are many, but again, the independence 
comes to rescue.

− Once you have distribution of parameters, you can 
do the prediction by model averaging.

− Very similar to the Bernoulli case.
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Prior x Likelihood
● A priori parameters independently Dirichlet:

P ∣=∏
i=1

n

P i=∏
i=1

n

∏
j=1

qi

P i∣ j=∏
i=1

n

∏
j=1

qi
∑

k=1

r i

ijk

∏
k=1

r i

ijk
∏
k=1

r i

ijk
ijk−1

● Likelihood compatible with conjugate prior:

P D∣G,=∏
i=1

n

∏
j=1

qi

∏
k=1

r i

ijk
N ijk

● Yields a simple posterior 
P ∣D,=∏

i=1

n

∏
j=1

qi

P ij∣N ij ,ij,

 where P ij∣N ij ,ij=Dir N ijij
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Predictive distribution P(d|D,α,G)

● Posterior: P ∣D,=∏
i=1

n

∏
j=1

qi
∑

k=1

r i

N ijkijk

∏
k=1

r i

N ijkijk
∏
k=1

r i

ijk
N ijkijk−1

P d∣D, ,G=∫


P d,∣D,d=∫


P d∣P ∣D,d

=∫∏
i=1

n

P di∣iP i∣D,d

=∏
i=1

n

∫
ipaidi

ipaidi
P ipaidi

∣N ipaidi
,ipaidi

dipaidi

=∏
i=1

n

ipaidi
=∏

i=1

n N ipaidi
ipaidi

∑
k=1

r i

N ipaik
ipaik

● Predictive distribution:
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Predictive distribution
● This means that predictive distribution 

P d∣D, ,G=∏
i=1

n N ipaidi
ipaidi

∑
k=1

r i

N ipaik
ipaik

● can be achieved by just setting 

ijk=
N ijkijk

N ijij

● So just gather counts N
ijk
, add α

ijk
 to them and 

normalize.
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Being uncertain about the Bayesian 
network structure 

● Bayesian says again:
− If you do not know it, you should have an a priori 

and the a posteriori distribution for it.

P G∣D=P D∣GP G
P D

− Likelihood P(D|G) is called the marginal 
likelihood and with certain assumptions, it can 
be computed in closed form

− Normalizer we can just ignore.
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Prediction over model structures

● This summation is not feasible as it goes over a 
super-exponential number of model structures

● Does NOT reduce to using a single expected model 
structure, like what happens with the parameters

● Typically use only one (or a few) models with high 
posterior probability P(M | D)

P  X∣D =∑
M

P  X∣M , D P M∣D 

=∑
M
∫


P X∣ , M , DP ∣M ,D d P M∣D

∝∑
M

P  X∣D  ,M P D∣M  P M 

=∑
M

P  X∣D ,M ∫


P D∣ , M P ∣M dP M 
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Averaging over an equivalence class

● Boils down to using a single model 
(assuming uniform prior over the models 
within the equivalence class):

P  X∣E =∑
M ∈E

P  X∣M , E P M∣E 

=∣E∣P  X∣M  1
∣E∣

=P X∣M 
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Model Selection

● Problem: The number of possible 
structures for a given domain is more 
than exponential in the number of 
variables

● Solution: Use only one or a handful of 
”good” models

● Necessary components: 
− Scoring method (what is ”good”?)
− Search method (how to find good models?)
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Learning the 
structure:
scoring
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Good models?
● In marginalization/summation/model 

averaging over all the model structures, the 
predictions are weighted by P(M | D), the 
posteriors of the models given the data

● If have to select one (a few) model(s), it 
sounds reasonable to use model(s) with the 
largest weight(s)

● P(M | D) = P(D | M)P(M)/P(D)
● Relevant components:

− The structure prior P(M)
− The marginal likelihood (the ”evidence”) P(D | M)
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How to set the structure prior P(M)?
● The ”standard” solution: use the uniform prior 

(i.e., ignore the structure prior)

● Sometimes suggested: P(M) proportional to the 
number of arcs so that simple models more 
probable
− Justification???

● Uniform over the equivalence classes? 
Proportional to the size of the equivalence class? 
What about the nestedness (full networks 
”contain” all the other networks)...?

● ...still very much an open issue
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Marginal likelihood P(D|G,α)
P D∣G,=P d1∣G,P d2∣d1,G,P dN∣d1, ,dN−1 ,G ,

=∏
i=1

n

∏
j=1

qi ij
 N ijij

∏
k=1

r i N ijkijk
 ijk

Cloudy=no Cloudy=yes

0N
C 1+1=2

Sprinkler=onSprinkler=off

0

0 0

N
S|C=no 1+1=2

N
S|C=yes

Rain=yes Rain=no

1 1

0 0

0 1

1 0

0 0

0 0

WetGrass=yesWetGrass=no
N

W|S=on,R=no

N
W|S=on,R=yes

N
W|S=off,R=no

N
W|S=off,R=yes
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Computing the marginal likelihood
● Two choices:

1 Calculate the sufficient statistics Nijk and 
compute P(D | M) directely using the (gamma) 
formula on the previous slide

2 Use the chain rule, and compute P(d1,...dn | M) 
= P(d1 | M)P(d2 | d1,M)...P(dn | d1,...,dn-1 | M) 
by using iteratively the predictive distribution 
(slide 18)

● OBS! The latter can be done in any order, 
and the result will be the same (remember 
Exercise 2?)!
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How to set the hyperparameters α?

● Assuming...
− a multinomial sample,
− independent parameters,
− modular parameters,
− complete data,
− likelihood equivalence,

...implies a certain parameter prior: BDe 
(”Bayesian Dirichlet with likelihood equivalence”)
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BDeu
● Likelihood equivalence: two Markov 

equivalent model structures produce to the 
same predictive distribution

● Means also that P(D |M) = P(D |M') if M 
and M' equivalent

● Let 

● BDe means that αi = α for all i, and α is the 
equivalent sample size 

● An important special case: BDeu (”u” for 
”uniform”): 

i=∑
j

ij ,whereij=∑
k

ijk

ijk=

qi r i

,ij=

qi
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Model selection in the Bernoulli case
● Toss a coin 250 times, observe D: 140 heads and 110 tails.
● Hypothesis H0: the coin is fair (P(ϴ=0.5) = 1)
● Hypothesis H1: the coin is biased 
● Statistics:
– The P-value is 7%
– “suspicious”, but not enough for rejecting the null hypothesis (Dr. Barry Blight, 

The Guardian, January 4, 2002)
● Bayes:
– Let’s assume a prior, e.g. Beta(a,a)
– Compute the Bayes factor

P D∣H 1
P D∣H 0

=
∫P D∣ ,H 1, aP ∣H 1,a d 

1 /2250
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Equivalent sample size and the Bayes 
Factor

0

0,5

1

1,5

2

0,37 1 2,7 7,4 20 55 148 403 1096

Equivalent sample size

B
ay

es
 f

ac
to

r 
in

 f
av

or
 o

f 
H

1



 Probabilistic Models, Spring 2009  Petri Myllymäki, University of Helsinki 32

A slightly modified example
● Toss a coin 250 times, observe D = 141 heads and 109 tails.
● Hypothesis H0: the coin is fair (P(ϴ=0.5) = 1)
● Hypothesis H1: the coin is biased 
● Statistics:
– The P-value is 4,97%
– Reject the null hypothesis at a significance level of 5%

● Bayes:
– Let’s assume a prior, e.g. Beta(a,a)
– Compute the Bayes factor

P D∣H 1
P D∣H 0

=
∫P D∣ ,H 1, aP ∣H 1,a d 

1 /2250
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Equivalent sample size and the Bayes 
Factor (modified example)
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Lessons learned

● Classical statistics and the Bayesian approach may give 
contradictory results

– Using a fixed P-value threshold is problematic as any null 
hypothesis can be rejected with sufficient amount of data

– The Bayesian approach compares models and does not aim at an 
“absolute” estimate of the goodness of the models

● Bayesian model selection depends heavily on the priors selected
– However, the process is completely transparent and suspicious 

results can be criticized based on the selected priors
– Moreover, the impact of the prior can be easily controlled with 

respect to the amount of available data
● The issue of determining non-informative priors is controversial
– Reference priors
– Normalized maximum likelihood & MDL (see 

www.mdl-research.org)

http://www.mdl-research.org/
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On Bayes factor and Occam’s razor
● The marginal likelihood (the “evidence”) P(D | 

H) yields a probability distribution (or density) 
over all the possible data sets D.

● Complex models can predict well many 
different data sets, so they need to spread the 
probability mass over a wide region of models

D

H2
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Hyperparameters in more complex 
cases

● Bad news: the BDeu score seems to be 
quite sensitive to the equivalent sample 
size (Silander & Myllymäki, UAI'2007)
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So which prior to use?
● An open issue
● One solution: use the ”priorless” 

Normalized Maximum Likelihood approach
● A more Bayesian solution: use the Jeffreys 

prior
− Can be formulated in the Bayesian network 

framework (Kontkanen et al., 2000), but 
nobody has produced software for computing it 
in practice (good topic for your thesis!)

− B-Course: = 1
2n
∑
i=1

n

r i
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Learning the 
structure:

search
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Learning the structure when
each node has at most one parent 

● The BD score is decomposable:

● For trees (or forests), can use the minimum 
spanning tree algorithm (see Chow & Liu, 
1968)

maxM P D∣M =maxM∏
i

P  X i∣Pai
M ,D 

=min M∑
i

f D  X i , Pai
M  ,

where f D  X i , Pai
M =log P  X i∣Pai

M , D −1
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The General Case
● Finding the best structure is NP-hard, if 

max. number of parents > 1 
(Chickering)

● New dynamic programming solutions 
work up to ~30 variables (Silander & 
Myllymäki, UAI'2006)

● Heuristics:
− Greedy bottom-up/top-down
− Stochastic greedy (with restarts)
− Simulated annealing and other Monte-

Carlo approaches
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Local Search

score
all possible

single changes

any
changes
better?

perform
best

change

yes

no

return
saved structure

initialize
structure

• prior structure
• empty graph
• max spanning tree
• random graph

extension:
multiple restarts
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Simulated Annealing

pick random change
and compute:

p=exp(score/T)

quit?

perform
change

with prob
p

yes

return
saved structure

initialize
structure

• prior structure
• empty graph
• max spanning tree
• random graph

no
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Evaluation Methodology

Gold
standard
network

learned
network(s)

prior
network

data

random
sample

noise 

Measures of utility of learned network:
- Cross Entropy (Gold standard network, learned network)
- Structural difference (e.g. #missing arcs, extra arcs, reversed arcs,...)

score +
search
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D

Gold Standard

Prior Network (no arcs)

Learned Network

Data (10,000 cases)
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Problems with the Gold standard 
methodology

● Structural criteria may not properly reflect 
the quality of the result (e.g., the relevance 
of an extra arc depends on the parameters)

● Cross-entropy (Kullback-Leibler distance) 
hard to compute

● With small data samples, what is the 
”correct” answer? Why should the learned 
network be like the generating network?

● Are there better evaluation strategies? How 
about predictive performance?
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Learning Learning 
with with 

Missing DataMissing Data
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Handling Missing Data
● Different types of missing data: missing completely a 

random, missing at random, not missing at random

● Latent (hidden) variable models, like the finite 
mixture model, always have to deal with hidden data

● We either are interested in the missing data (e.g., we 
could be interested in the values of the a hidden 
variable if it corresponds to a clustering of data), or it 
is treated as ”nuicance” (e.g., if the hidden ”class” 
variable is only used as a modeling tool to produce a 
joint probability distribution on the observed 
variables)

● In the latter case, a Bayesian attempts to marginalize 
over the hidden data
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The Finite Mixture Model

● With hidden data imposed by C, it is 
computationally infeasible to compute
− Maximum likelihood parameters
− Expected parameters (or max. posterior)
− Marginal likelihood

● Model ”structure” learning: how many values for C?

C

X
1 X

2
X

3
X

4
X

5

P(C)

P(X
1
|C) P(X

2
|C) P(X

3
|C) P(X

4
|C) P(X

5
|C)

P D=P X 1
n , ... , X 5

n
=∑

Cn
P CnP X 1

n , ... , X 5
n∣C n

=∑
Cn
P Cn∏

i

P  X i
n∣Cn

X1 X2 X3 X4 X5 C



 Probabilistic Models, Spring 2009  Petri Myllymäki, University of Helsinki 50

K-Means

● Normally, a geometric clustering algorithm
● A probabilistic version:

1 Start with a random initial clustering c1,...,cn

2 Build a model  Θ using complete data (Xn,Cn)

3 Using Θ, assign each data vector X 
independently to it's most probable cluster 
(i.e., find max P(Ci | Xi, Θ) for all i)

4 Go to 2.
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Expectation Maximization (EM)

● A ”soft” version of K-Means
● Intuitively: data vectors are assigned 

”fractionally” to each cluster (with the 
fractions determined by the classification 
probabilities)

● The new model Θ is computed from semi-
complete data (fractional sufficient 
statistics)

● For HMMs: the Baum-Welch algorithm
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K-Means and EM in practice
● Both provably monotonically improve the 

likelihood (or posterior), so they converge 
to a local optimum only 

● Convergence can be slow
● To get reasonable results, need to repeat 

several runs from different starting points
● Can be used together: e.g., first run K-

means, then continue with EM
● Can be used to find good starting points for 

other heuristics
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Structure learning with FMM's

● Can find models Θ using different number of values 
for the hidden variable (different number of 
parameters)

● Which Θ to choose? (max. likelihood chooses always 
the model obtained with the highest number of 
parameters)

● Computing the marginal likelihood not feasible with 
the missing data imposed by the hidden variable

P K∣D∝P D∣K P K 
P D∣K =∫ P D∣K ,P ∣K d 

P D∣K ,=∏
i
∑
k=1

K

P d i∣ci ,P ci∣
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Approximating the marginal likelihood

● Laplace (Gaussian) approximation
● Bayesian Information Criterion (BIC)
● Akaike Information Criterion (AIC)
● Missing data completion
● Stochastic methods (MCMC etc.)
● Variational methods
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Laplace's method / 
Gaussian approximation

● Based on Taylor approximation at the maximum 
likelihood parameters:

−log P D∣M ≈−log P D∣M , −log P  ∣M  d
2

log n
2

log∣I  ∣

● Here ”d” is the number of parameters, ”n” is the 
size of the data, and |I(Θ)| is the determinant of 
the Fisher information matrix at Θ

● A ”penalized log-likelihood” criterion: likelihood 
grows with more complex models, but it 
compensated by the penalizing factors

● Jeffreys' prior: P ∣M = ∣I ∣
∫∣I ∣d 
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BIC and AIC

● BIC:

● AIC:

● Both converge asymptotically to the marginal 
likelihood (minus a constant)

● Hence marginal likelihood is also in a sense a 
penalized maximum likelihood criterion!

● It is a non-trivial problem to determine the 
”correct” value of d

−logP D∣M ≈−logP D∣M ,  d
2

log n

−logP D∣M ≈−logP D∣M , d
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Missing data completion

● Cn is like an unknown ”parameter”

● If you cannot marginalize over a parameter, 
you can try to maximize it

● As the ”parameter” Cn is actually data, it is 
easy to think of reasonable ”priors” P(Cn | M)

● With fixed M, Cn can be optimized with K-
means, EM, or whatever...

P  X n∣M =∑
C n

P X n ,Cn∣M =∑
C n

P  X n∣C n , M P C n∣M 

P  X n∣M ∝maxC nP X n∣C n ,M P C n∣M 

● Direct marginalization not feasible:
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Supervised BN Learning
● Parameter learning

− Generative modeling:
− Discriminative modeling:
− In general, the result is not the same!

● Structure learning

− Generative modeling:
− Discriminative modeling:
− In general, the result is not the same!
− Marginal conditional likelihood not feasible 

• Kontkanen et al. (UAI 1999): approximations, 
connection to cross-validation

Find arg maxP  X
n ,Cn∣M ,

Find arg maxP C
n∣X n , M ,

Find arg maxM P X
n ,C n∣M 

Find arg maxM P C
n∣X n , M 
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Optimizing the conditional likelihood

● Bad news: even for the Naive Bayes model, the 
maximum of the conditional likelihood cannot be 
presented in closed form

● Good news: For some Bayesian networks (e.g., 
NB and TAN), the the conditional log-likelihood 
space is concave (Roos et al., MLJ 2005) → it 
has a single global optimum

● ”Supervised” Naive Bayes = logistic regression
● For model structure learning: marginal conditional 

likelihood not feasible (Kontkanen et al., UAI 
1999)



 Probabilistic Models, Spring 2009  Petri Myllymäki, University of Helsinki 60

Models with many hidden nodes
● Is it sensible to first learn a Bayesian 

network (NP-hard) and then try to 
transform it to a simpler representation for 
probabilistic inference (NP-hard)?

● How about learning directly structures 
where inference is easy?
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Dynamic Bayesian networks
● Complex Markov models involving 

temporal dependencies
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Undirected 
Graphical 

Models
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Definitions of independence
● Following definitions equivalent for X1⊥ X2 | 

Z:
− p(X1,X2 | Z) = p(X1 | Z)p(X2 | Z) whenever p(Z)>0
− p(X1 | X2,Z) = p(X1 | Z) whenever p(X2,Z)>0
− p(X2 | X1,Z) = p(X2 | Z) whenever p(X1,Z)>0
− p(X1,X2,Z) = f(X1,Z)g(X2,Z) for non-negative 

functions f(·),g(·)

● Definitions symmetric in X1 and X2
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Image models

● The graph on the 
right says that each 
pixel is influenced 
only by its 
neighbors
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Undirected graphical models
● Local Markov property:

−  X ┴ (G-nbrs(X)-{X}) | nbrs(X)
− Minimal independence properties to uniquely 

determine a graph
● Global Markov property:

− For all X1,X2,Z: X1 ┴ X2 | Z iff X1 is separated in 
the graph from X2 by Z.

− How to test for independence
● Functional form:

− Product over cliques C (XC denoting the 
members of the clique)

− Definition for purposes of computation

P X 1 , ... , X n=∏
C

f CX C
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For example...

● Local Markov property:
− E.g.: B ┴ E,F | A,C,D; C ┴ A,F | B,D,E;...

● Global Markov property:
− E.g.: A,B ┴ E,F | C,D.

● Functional form: 
− P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)

A B

C

D

E F
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The three properties are 
equivalent

● Global Markov property implies the local
● Functional form implies the global Markov 

property
● Hammersley-Clifford theorem: Local 

Markov property implies the functional form 
(for discrete variables)
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Markov Random Fields
● Undirected graphical models, a.k.a. Markov 

networks
● Typically use alternative functional form:

● Sometimes also called the Gibbs 
distribution

● The cliquewise functions fC are called 
clique potentials

● The normalizer Z is called the partition 
function

P  X = 1
Z

exp ∑
C

C f CX C 
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Mapping a DAG to a MRF is 
possible...

● Mapping is straightforward if a node and its 
parents in a DAG belong to the same clique 
in the MRF

● This means that to get the corresponding 
MRF, we need to ”marry” nodes with common 
children (this is called moralizing the graph)

● It follows that inference in undirected graphs 
is NP-hard too...

∏
i
P X i∣Pai ∏

C
f C  X C 
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...but DAGs and MRFs are not 
equivalent independence models

● A ┴ D | B,C and

B ┴ C | A,D

● A ┴ B and 

A ┴/// B | C

A

D

CB

B

C

A
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Final remarks
● The Bayesian framework offers an elegant, consistent 

formalism for uncertain reasoning

● The basic principle is simple: compute the probability of what 
you want to know while marginalizing over the other unknown 
factors

● We have focused on the discrete Dirichlet-multinomial case 
and directed acyclic graphs (Bayesian networks), but the 
same principles apply with other probabilistic model families 
as well

● Graphical models offer a unifying framework where many 
popular methods are easily understood

− E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman 
filter, switching Kalman filter, AR models,...

− See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
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