1. Let A and B be independent events. Show that A and B^c are independent.

Solution: We write A as the union of two disjoint sets: $A = (A \cap B^c) \cup (A \cap B)$. Then, by the additivity axiom of probability,

$$P(A \cap B^c) = P(A) - P(A \cap B).$$

Since A and B are independent, $P(A \cap B) = P(A)P(B)$. Therefore,

$$P(A \cap B^c) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A)P(B^c),$$

which implies that A and B^c are independent.

2. Let A and B be events with $P(A) > 0$ and $P(B) > 0$. We say that an event B suggests an event A if $P(A | B) > P(A)$, and does not suggest event A if $P(A | B) < P(A)$. Show that B suggests A if and only if A suggests B.

Solution: We have $P(A \cap B) = P(A | B)P(B)$, so B suggests A if and only if $P(A \cap B) > P(A)P(B)$, which is equivalent to A suggesting B, by symmetry. (Alternatively, one may use Bayes’ theorem to establish the statement.)

Let X,Y,Z be discrete random variables with joint PMF p.

3. Show that $p(x | y, z) = p(x, y | z)/p(y | z)$ for all x, y, z with $p(y, z) > 0$.

Solution: By the definition of conditional probability,

$$p(x | y, z) = \frac{p(x, y, z)}{p(y, z)}, \quad \forall x, y, z \text{ with } p(y, z) > 0,$$

$$p(x, y | z) = \frac{p(x, y, z)}{p(z)}, \quad \forall x, y, z \text{ with } p(z) > 0,$$

$$p(y | z) = \frac{p(y, z)}{p(z)}, \quad \forall y, z \text{ with } p(z) > 0.$$

Since $p(y, z) > 0$ implies $p(z) > 0$, we have for all x, y, z with $p(y, z) > 0$,

$$p(x | y, z) = \frac{p(x, y, z)}{p(y, z)} = \frac{p(x, y, z)p(z)}{p(y, z)p(z)} = \frac{p(x, y | z)}{p(y | z)}.$$
4*. Show that the following are all equivalent definitions of the conditional independence $X \perp Y \mid Z$:

\begin{align*}
&p(x, y, z) = p(x \mid z)p(y \mid z)p(z), \quad \forall x, y, z. \quad (1) \\
p(x, y, z) = p(x, z)p(y, z)/p(z), \quad \forall x, y, z \text{ with } p(z) > 0. \quad (2) \\
p(x, y, z) \text{ has the form } a(x, z)b(y, z), \quad \forall x, y, z. \quad (3) \\
p(x \mid y, z) = p(x \mid z), \quad \forall x, y, z \text{ with } p(y, z) > 0. \quad (4) \\
p(x \mid y, z) \text{ has the form } a(x, z), \quad \forall x, y, z \text{ with } p(y, z) > 0. \quad (5)
\end{align*}

In the above, a and b are some real-valued functions.

Solution: We prove that (1)-(5) are equivalent to each other by showing “(1) \iff (2),” “(1) \iff (4),” “(3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (3),” in this order. Whenever multiplication involves a quantity that appears to be undefined, we define $0 \cdot $ (undefined value) $= 0$ and $c \cdot $ (undefined value) $= $ (undefined value) for $c \neq 0$. Two quantities c_1 and c_2 are considered to be unequal if both of them are undefined.

(1) \iff (2): Since Eq. (1) always holds when $p(z) = 0$, we only need to show the equivalence of Eq. (1) and Eq. (2) for all x, y, z with $p(z) > 0$. Using the fact $p(x, z) = p(x \mid z)p(z)$ and $p(y, z) = p(y \mid z)p(z)$, we have for all x, y, z with $p(z) > 0$,

$$p(x \mid z)p(y \mid z)p(z) = p(x \mid z)p(y, z) = p(x, z)p(y, z)/p(z),$$

which establishes the claimed equivalence.

(1) \iff (4): When $p(y, z) = 0$, $p(y \mid z)p(z) = 0$ and $p(x, y, z) = 0$. This shows that Eq. (1) always holds when $p(y, z) = 0$, so we only need to prove the equivalence of Eq. (1) and Eq. (4) for all x, y, z with $p(y, z) > 0$. For all such x, y, z, using the fact $p(x \mid y, z) = p(x, y, z)/p(y, z)$, we have

$$p(x \mid y, z) = p(x \mid z) \iff p(x, y, z) = p(x \mid z)p(y, z) = p(x, z)p(y, z)/p(z),$$

which establishes the claimed equivalence.

(3) \Rightarrow (4): When (3) holds, we have

$$p(y, z) = b(y, z)\sum_{x'}a(x', z), \quad p(x, z) = a(x, z)\sum_{y'}b(y', z), \quad p(z) = \sum_{x'}a(x', z)\cdot \sum_{y'}b(y', z).$$

For all x, y, z with $p(y, z) > 0$, we have $p(z) > 0$ and

$$p(x \mid y, z) = \frac{p(x, y, z)}{p(y, z)} = \frac{a(x, z)}{\sum_{x'}a(x', z)},$$

$$p(x \mid z) = \frac{p(x, z)}{p(z)} = \frac{a(x, z)\sum_{y'}b(y', z)}{\sum_{x'}a(x', z)\cdot \sum_{y'}b(y', z)} = \frac{a(x, z)}{\sum_{x'}a(x', z)},$$

which implies (4).

(4) \Rightarrow (5) \Rightarrow (3): It is evident that (4) implies (5). Consider now the case where (5) holds. If the function $a(x, z)$ is not defined at some points (x, z), we can always define the values of the function at those points to be zero, say, thereby extending the function a to the entire space of (x, z). Using the identity $p(x, y, z) = p(x \mid y, z)p(y, z)$, we have $p(x, y, z) = a(x, z)p(y, z)$, which implies (3).
Calculations of conditional probabilities:

5. Two fair coins are tossed and at least one coin came up heads. What is the probability that both coins came up heads?

Solution: Let A denote the event that at least one coin come up heads and B the event that both coins come up heads. Then $A = \{HH, HT, TH\}$, $B = \{HH\}$, and $A \cap B = B$. Since the coins are fair, all outcomes are equally likely, so $P(A) = 3/4$, $P(B) = 1/4$, and the desired probability, $P(B|A)$, is

$$P(B|A) = P(A \cap B)/P(A) = \frac{3}{4}/\frac{3}{4} = \frac{1}{3}. \quad \Box$$

6. A test for a certain rare disease is assumed to be correct 95% of the time: if a person has (does not have) the disease, the test results are positive (negative) with probability 0.95. A random person drawn from a certain population has probability 0.001 of having the disease. Given that the person just tested positive, what is the probability that the person has the disease?

Solution: Let A denote the event that the person has the disease and B the event that the test results are positive. From the statement of the problem, we have

$$P(B|A) = P(B^c|A^c) = 0.95, \quad P(A) = 0.001.$$ To calculate the desired probability, $P(A|B)$, we use Bayes’ theorem and the fact

$$P(B) = P(B \cap A) + P(B \cap A^c) = P(B|A)p(A) + P(B|A^c)p(A^c)$$

to obtain

$$P(A|B) = \frac{P(B|A)p(A)}{P(B)} = \frac{P(B|A)p(A)}{P(B|A)p(A) + P(B|A^c)p(A^c)} \approx 0.0187. \quad \Box$$

About Markov chains:

7. A mouse moves along a tiled corridor with $2m$ tiles, where $m > 1$. From each tile $i \neq 1, 2m$, it moves to either tile $i-1$ or $i+1$ with equal probability. From tile 1 or $2m$, it moves to tile 2 or $2m-1$, respectively, with probability 1. Each time the mouse moves to a tile $i \leq m$ or $i > m$, an electronic device outputs a signal L or R, respectively. Can the generated sequence of signals L and R be described as a Markov chain with states L and R? Suppose now the device outputs L or R only when the mouse moves to tile 1 or $2m$, respectively. Can the generated sequence of L and R be described as a Markov chain with states L and R?

Solution: Let $\{X_n\}$ denote the generated sequence of L or R. In the case of the first question, $\{X_n\}$ cannot be described as a Markov chain with states L and R, because $P(X_{n+1} = L|X_n = R, X_{n-1} = L) = 1/2$, while $P(X_{n+1} = L|X_n = R, X_{n-1} = R, X_{n-1} = L) = 0$.

In the case of the second question, $\{X_n\}$ can be described as a Markov chain with states L and R. We argue as follows. The sequence of positions of the mouse can be described as a Markov chain on the state space $\{1, 2, \ldots, 2m\}$. At any time t, given that the mouse just moved to tile 1, the probability of any event that concerns only its future positions does not depend on its positions before time t. Therefore, for any $x_1, \ldots, x_n \in \{L, R\}$ and $x_{n+1} \in \{L, R\}$,

$$P(X_{n+1} = x_{n+1} | X_n = L, X_{n-1} = x_n, \ldots, X_1 = x_1) = P(X_{n+1} = x_{n+1} | X_n = L),$$

and similarly,

$$P(X_{n+1} = x_{n+1} | X_n = R, X_{n-1} = x_n, \ldots, X_1 = x_1) = P(X_{n+1} = x_{n+1} | X_n = R).$$

This shows that $\{X_n\}$ satisfies the Markov property. \quad \Box