
Course Probabilistic Models: Exercise 2, due on Fri Feb 5 1

In what follows [Dav] refers to Davison’s book.

1. For the six-parameter model given at the end of Example 6.8 in [Dav] (p. 237) and the data
in Table 6.2 (p. 227), write down the log likelihood function, and calculate the maximum
likelihood estimates and the maximized log likelihood. Compare the AIC value of this model
with those of the zeroth-order and first-order Markov models based on the same data.

Solution: For the six-parameter model, denote

θ1β = pαβ , where α ∈ {A, G, T}, β ∈ {A, C, G, T},

and
θ2β = pCβ , where β ∈ {A, C, G, T}.

For each β ∈ {A, C, G, T}, we obtain from Table 6.2 the following counts n1β of all pairs of bases
which start from some base in {A, G, T} and end at base β:

n1A = 516− 101 = 415, n1C = 263− 41 = 222, n1G = 226− 6 = 220, n1T = 566− 115 = 451.

The corresponding frequency of β as the second base among all pairs that start from some base in
{A, G, T} is given for each β by

q1A = 0.317, q1C = 0.170, q1G = 0.168, q1T = 0.345.

For pairs of the form (C, β), Table 6.2 gives the counts nCβ and frequencies qCβ as

nCA = 101, nCC = 41, nCG = 6, nCT = 115,

qCA = 0.384, qCC = 0.156, qCG = 0.023, qCT = 0.437.

Let θ denote the collection of θ1β , θ2β , β ∈ {A, C, G, T}. The log likelihood function is

`(θ) =
∑

β∈{A,C,G,T}

n1β ln θ1β +
∑

β∈{A,C,G,T}

nCβ ln θ2β

= 1308
∑

β∈{A,C,G,T}

q1β ln θ1β + 263
∑

β∈{A,C,G,T}

qCβ ln θ2β .

By the information inequality, the expression in the first term,
∑

β∈{A,C,G,T} q1β ln θ1β , is maximized
by taking θ1β = q1β , and similarly for the second term. So the maximum likelihood estimates are

θ̂1β = q1β , θ̂2β = qCβ , β ∈ {A, C, G, T}.

The maximized log likelihood is
`(θ̂) = −2033.4.

Since this model has 6 free parameters, its AIC value is

AIC = 2(−`(θ̂) + 6) = 4078.9.

The maximized log likelihoods of the zero-th order and first-order Markov chains are calculated
similarly. The zero-th order Markov chain has 3 free parameters, and its maximized log likelihood
and AIC value are

`(θ̂) = −2060.6, AIC = 2(−`(θ̂) + 3) = 4127.1.

The first-order Markov chain has 12 free parameters, and its maximized log likelihood and AIC value
are

`(θ̂) = −2028.3, AIC = 2(−`(θ̂) + 12) = 4080.7.

2. Do Exercise 6.12 in [Dav] (p. 244) with “stationary distribution π” replaced by “initial distri-
bution µ.”
(About this exercise: the notation prs(n) refers to the n-step transition probability from state
r to s; notice the hint on the margin “Look carefully at the data.”)



Course Probabilistic Models: Exercise 2, due on Fri Feb 5 2

Solution: As we have shown in the class, being the subsequence of a Markov chain at times
0, t1, . . . , tk, the sequence of variables S0, S1, . . . , Sk is also a Markov chain. The likelihood is

L = p(s0, s1, . . . , sk) = p(s0) ·
k∏

j=1

p(sj |sj−1) = p(s0)psj−1sj (tj − tj−1).

In the case of a sequence of states ‘12311’ observed at times 0, 1, 3, 4, 6,

L = µ(1) · p12 · p23(2) · p31 · p11(2).

For Example 6.2 with the data in Table 6.3, there are 37 independent Markov chains, one for
each patient. Corresponding to the ith patient, we can calculate the likelihood Li using the above
formula. As the Markov chains are independent of each other, we multiply Li together to obtain
the likelihood L:

L =
37∏

i=1

Li.

In this case L = 0 because L19 = 0: we have p13 = 0 according to our model, and the state sequence
of the 19th patient is ‘113’ observed at times 0, 3, 6 months, so Li = µ(1) · p11 · p13 = 0. This shows
that the model would be more plausible if p13 > 0.

3. Suppose Θ is our model for a discrete random variable Y0 whose true distribution is Q∗ and
PMF q∗. Let

θ∗ ∈ arg min
θ∈Θ

KL
(
q∗, pθ

)
6= ∅,

where pθ denotes the PMF of the distribution associated with θ. Let Y = (Y1, Y2, . . . , Yn) be
a random sample of size n from the distribution Q∗. For each observation y = (y1, y2, . . . , yn)
of Y , let Qy be the empirical distribution of Y0, i.e., Qy(Y0 = i) equals the frequency of i in y,
and let qy denote the corresponding PMF. Let θ̂(y) be the maximum likelihood estimate of θ

based on the data y (assume θ̂(y) exists). Show that for all possible observations y,

KL
(
qy, pθ̂(y)

)
≤ KL

(
qy, pθ∗

)
.

Discuss what this means in practice.

Solution: The likelihood for θ based on y is

L(θ; y) =
n∏

k=1

P (Y0 = yk; θ) =
n∏

k=1

pθ(yk).

Assume that Y0 takes m possible values, 1, 2, . . . ,m. Then, we can write the log likelihood as

`(θ; y) =
n∑

k=1

ln pθ(yk) =
n∑

k=1

m∑
i=1

I(yk = i) · ln pθ(yk),

where I(· · · ) denotes the indicator function:

I(yk = i) = 1 if yk = i; I(yk = i) = 0 otherwise.

It follows then

1
n

`(θ; y) =
1
n

n∑
k=1

m∑
i=1

I(yk = i) · ln pθ(i)

=
m∑

i=1

1
n

( n∑
k=1

I(yk = i)
)
· ln pθ(i)

=
m∑

i=1

qy(i) · ln pθ(i). (1)
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We can relate `(θ; y) to the KL-divergence between qy and pθ: by the definition of KL-divergence,

KL(qy, pθ) =
m∑

i=1

qy(i) · ln
(

qy(i)
pθ(i)

)
=

m∑
i=1

qy(i) · ln qy(i)−
m∑

i=1

qy(i) · ln pθ(i),

where the first term is minus the entropy of Y0, −H(Y0), and it does not depend on θ. So Eq. (1)
is equivalent to

1
n

`(θ; y) = −KL(qy, pθ)−H(Y0). (2)

Since θ̂(y) is the maximum likelihood estimate of θ,

`(θ̂(y); y) ≥ `(θ; y), ∀θ ∈ Θ,

and by Eq. (2) this is equivalent to

KL
(
qy, pθ̂(y)

)
= min

θ∈Θ
KL

(
qy, pθ̂(y)

)
≤ KL

(
qy, pθ∗

)
.

Contrasting the above inequality with the definition of θ∗, we see that if the empirical distribution
qy is a poor approximation of the true distribution q∗, (which can happen when the sample size n is
too small relatively to m and the dimension of θ), then θ̂(y) can be far away from the best distribution
θ∗ in the model. And furthermore, from Eq. (2), we see that the maximized log likelihood `(θ̂; y)
can be unreliable for assessing the fitness of the model.

4. HMM is widely applied in biological sequence alignment. For aligning two sequences with
possibly different lengths, the model is often described concisely in terms of a probabilistic
finite state automaton (PFSA) like the one shown below.
The PFSA has three states: state M , corresponding to a
match, and states I1, I2, corresponding to inserting a gap in
the first and second sequence, respectively. State M emits
an aligned pair of symbols ‘a:b’ with probability pab; state
I1 emits a symbol ‘a’ against a gap with probability qa;
and similarly, state I2 emits a gap against a symbol ‘a’ with
probability qa. Possible transitions between the three states
are indicated by the arcs with the corresponding probabil-
ities. For example, with ‘-’ representing a gap, the PFSA
can generate an aligned pair of sequences

ACG-
A-GT

MI1

I 2
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Y0, i.e., Qy(Y0 = i) equals the frequency of i in y, and let qy denote the corresponding PMF.
Let

θ∗ ∈ arg min
θ∈Θ

KL
(
q∗, pθ

)
,

where pθ denotes the PMF of the distribution associated with θ, and let θ̂(y) be the maximum
likelihood estimate of θ based on the data y. (Assume that θ∗, θ̂(y) exist.) Show that for all
possible observations y,

KL
(
qy, pθ̂(y)

)
≤ KL

(
qy, pθ∗

)
.

Discuss what this means in practice.

4. HMMs are widely used for biological sequence alignment. For aligning two sequences with
possibly different lengths, the model is often described concisely in terms of a probabilistic
finite state automaton (PFSA) like the one shown below. The PFSA has three states: state
M , corresponding to a match, and states I1, I2, corresponding to inserting a gap in the first
and second sequence, respectively. State M has probability pab for emitting an aligned pair of
symbols ‘a:b’; state I1 has probability qa for emitting symbol ’a’ against a gap; and similarly,
state I2 has probability qa for emitting a gap against a symbol ’a’.

ε δ 1− δ 1− ε

5. Prove Eq. (6.13) in [Dav] (p. 246) (i.e., Besag’s theorem in the slides of Lecture 4) under the
positivity condition.
Hint: for any two possible values (y1, y2, . . . , yn) and (x1, x2, . . . , xn) of (Y1, Y2, . . . , Yn), use
the identity

p(y1, . . . , yn) = p(yn |y1, . . . , yn−1) p(y1, . . . , yn−1)

to show that
p(y1, . . . , yn) =

p(yn |y1, . . . , yn−1)
p(xn |y1, . . . , yn−1)

p(y1, . . . , yn−1, xn),

and then that

p(y1, . . . , yn−1, xn) =
p(yn−1 |y1, . . . , yn−2, xn)
p(xn−1 |y1, . . . , yn−2, xn)

p(y1, . . . , yn−2, xn−1, xn),

and so on.
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)
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For our alignment problem, we assume that the pairs of sequences to be aligned are generated
by this PFSA. What are the latent and observable random variables in this model? Specify
the form of their joint distribution and draw the corresponding graphical model.

Solution: We can define latent random variables X = {Xi} and observable random variables Y
as follows. We let Y = (Y1, Y2), where Y1, Y2 corresponds to the first and the second sequence,
respectively, in the alignment problem. We let Xi correspond to the state and the symbols emitted
by the PFSA at time i, in particular, xi = (sPFSA,i, (αi : βi)), where sPFSA,i is the state that the
PFSA is in and (αi : βi) the pair of symbols the PFSA emits at time i. The graphical model is

1X 2X nXn-1X

Y
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The length n is also a random variable. The sequence X1, . . . , Xn is a Markov chain whose transitions
are described by the PFSA model. The relation between Y and X is deterministic: if X = x, then
Y1 is the sequence α1 . . . αn with the gap symbols removed, and Y2 is the sequence β1 . . . βn with
the gap symbols removed.

5*. Prove Eq. (6.13) in [Dav] (p. 246) (i.e., Besag’s theorem in the slides of Lecture 4) under the
positivity condition.
Hint: for any two possible values (y1, y2, . . . , yn) and (x1, x2, . . . , xn) of (Y1, Y2, . . . , Yn), use
the identity

p(y1, . . . , yn) = p(yn |y1, . . . , yn−1) p(y1, . . . , yn−1)

to show that

p(y1, . . . , yn) =
p(yn |y1, . . . , yn−1)
p(xn |y1, . . . , yn−1)

p(y1, . . . , yn−1, xn),

and then that

p(y1, . . . , yn−1, xn) =
p(yn−1 |y1, . . . , yn−2, xn)
p(xn−1 |y1, . . . , yn−2, xn)

p(y1, . . . , yn−2, xn−1, xn),

and so on.

Solution: We want to prove Eq. (6.13), which states that for any two possible values (y1, . . . , yn)
and (x1, . . . , xn) of (Y1, . . . , Yn),

p(y1, . . . , yn)
p(x1, . . . , xn)

=
n∏

i=1

p(yi |y1, . . . , yi−1, xi+1, . . . , xn)
p(xi |y1, . . . , yi−1, xi+1, . . . , xn)

. (3)

To this end, consider

(z1, . . . , zn), where zi ∈ {yi, xi}, i = 1, . . . , n.

Since p(zi) > 0 for all i, we have by the positivity condition,

p(z1, . . . , zn) > 0. (4)

Let us define

zi = (y1, . . . , yi−1, xi, . . . , xn), i = 1, . . . , n; zn+1 = (y1, . . . , yn).

Let zi
−i denote the collection of the components of zi except for the ith component. For i = 1, . . . , n,

p(zi+1) and p(zi) differ only in the ith component, namely

zi+1
−i = zi

−i, zi+1
i = yi, zi

i = xi; (5)

and p(zi+1), p(zi) satisfy

p(zi+1) = p(zi+1
i |zi+1

−i ) p(zi+1
−i ) = p(yi |zi+1

−i ) p(zi+1
−i ),

p(zi) = p(zi
i |zi+1

−i ) p(zi
−i) = p(xi |zi+1

−i ) p(zi
−i).

By Eq. (4), p(zi) > 0, so dividing the first equation by the second and using also the fact that
zi+1
−i = zi

−i, we obtain
p(zi+1)
p(zi)

=
p(yi |zi

−i)
p(xi |zi

−i)
, i = 1, . . . , n.

This implies
n∏

i=1

p(zi+1)
p(zi)

=
n∏

i=1

p(yi |zi
−i)

p(xi |zi
−i)

. (6)

Since
n∏

i=1

p(zi+1)
p(zi)

=
p(zn+1)
p(z1)

=
p(y1, . . . , yn)
p(x1, . . . , xn)

and zi
−i = (y1, . . . , yi−1, xi+1, . . . xn) by the definition of zi, Eq. (6) is identical to Eq. (3).


