
Course Probabilistic Models: Exercise 5, due on Fri Feb 26 1

1. Consider the computer failure example described in the book by Cowell et al. (Chap. 2.9, p.
17-19), with two DAG models given in Fig. 2.5 and 2.6 respectively, and with the following
specifications of variables and probabilities:

C : Computer failure?, E : Electricity failure?, M : Malfunction?, L : Light failure?.

P (E = yes) = 0.1, P (M = yes) = 0.2,

P (C = yes | E = no,M = no) = 0, P (C = yes | E = no,M = yes) = 0.5,

P (C = yes | E = yes,M = no) = 1, P (C = yes | E = yes,M = yes) = 1,

P (L = yes | E = yes) = 1, P (L = yes | E = no) = 0.2.

Use belief propagation to find answers to the following questions:

(a) What is P (C = yes) under the model in Fig. 2.5?

(b) Suppose we find the computer fails (the event C = yes occurs). What are

P (E = yes |C = yes), P (M = yes |C = yes)

under the model in Fig. 2.5?

(c) Suppose we find also that the light does not work (L = yes). What are

P (E = yes |C = yes, L = yes), P (M = yes |C = yes, L = yes)

under the model in Fig. 2.6?

(d) What is the most probable configuration of (E,M) under the condition of (c)?

(Please include all the intermediate steps in your solution.)

Solution: Let λuv(no), λuv(yes) denote the two elements of a λ-message from a node u to a node
v, and let λuv denote the message in vector form

[
λuv(no) , λuv(yes)

]
. We use similar notation for

π-messages.

(a) Node C receives the messages from E and M ,

πEC =
[
P (E = no) , P (E = yes)

]
=

[
0.9 , 0.1

]
, πMC =

[
P (M = no) , P (M = yes)

]
=

[
0.8 , 0.2

]
,

from which it can calculate its belief P (C = yes) as

P (C = yes) =
∑

a∈{yes,no}

∑
b∈{yes,no}

P (C = yes | E = a,M = b) · πEC(a) · πMC(b) = 0.19. (1)

(b) Let e denote the evidence/event {C = yes}. Node C sends the messages to E and M ,

λCE =
[
P (C = yes | E = no) , P (C = yes | E = yes)

]
=

[
0.1 , 1

]
,

λCM =
[
P (C = yes | M = no) , P (C = yes | M = yes)

]
=

[
0.1 , 0.55

]
,

which are composed by using the following formula: for a ∈ {yes,no},

λCE(a) =
∑

b∈{yes,no}

P (C = yes | E = a,M = b) · πMC(b), (2)

λCM (a) =
∑

b∈{yes,no}

P (C = yes | E = b, M = a) · πEC(b). (3)

Receiving the message λCE =
[
0.1 , 1

]
from C, node E then calculates

P (E = no, e) = P (E = no) · λCE(no) = 0.09, P (E = yes, e) = P (E = yes) · λCE(yes) = 0.10,
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and obtains by normalization that

P (E = yes | e) =
P (E = yes, e)

P (E = no, e) + P (E = yes, e)
= 0.5263. (4)

Similarly, receiving the message λCM =
[
0.1 , 0.55

]
from C, node M calculates

P (M = no, e) = P (M = no) · λCM (no) = 0.08, P (M = yes, e) = P (M = yes) · λCM (yes) = 0.11,

and obtains by normalization that

P (M = yes | e) =
P (M = yes, e)

P (M = no, e) + P (M = yes, e)
= 0.5789. (5)

The normalization constant in both cases is the same; it is the probability of e:

P (e) = P (C = yes) =
∑

a∈{yes,no}

P (E = a, e) =
∑

a∈{yes,no}

P (M = a, e) = 0.19,

which is consistent with the result of part (a), as it should be.

(c) Let e′ denote the new total evidence {C = yes, L = yes} and e′L the partial evidence {L = yes}.
Node L sends a message to E:

λLE =
[
P (L = yes | E = no) , P (L = yes | E = yes)

]
=

[
0.2 , 1

]
.

Combining this with the message λCE =
[
0.1 , 1

]
(from part (b)), node E can then calculate

P (E = no, e′) = P (E = no) · λCE(no) · λLE(no) = 0.018,

P (E = yes, e) = P (E = yes) · λCE(yes) · λLE(yes) = 0.100,

and by normalization,

P (E = yes | e′) =
P (E = yes, e′)

P (E = no, e′) + P (E = yes, e′)
= 0.8475. (6)

At the same time, node E sends a new message to C:

πEC =
[
P (E = no, e′L) , P (E = yes, e′L)

]
=

[
0.18 , 0.10

]
,

which is composed by the formula

πEC(a) = P (E = a) · λLE(a), a = yes, no.

Subsequently, C sends a new message to M , composed by using the formula in Eq. (3),

λCM =
[
P (e′ | M = no) , P (e′ | M = yes)

]
=

[
0.10 , 0.19

]
.

Node M now updates its belief by calculating

P (M = no, e′) = P (M = no) ·λCM (no) = 0.08, P (M = yes, e′) = P (M = yes) ·λCM (yes) = 0.038,

and obtains by normalization that

P (M = yes | e′) =
P (M = yes, e′)

P (M = no, e′) + P (M = yes, e′)
= 0.3220. (7)

For both E and M , the normalization constant is

P (e′) = 0.118.
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(d) The π∗-messages that E sends to C coincide with the π-messages it sends in part (c) (because
no variables need to be eliminated in the sub-polytree containing E). This is also the case with the
π∗-message from M to C and with the λ∗-message from L to E.

After e′ occurs, node C has the following π∗-messages from E and M respectively:

π∗EC =
[
0.18 , 0.10

]
, (from part (c)); π∗MC =

[
0.8 , 0.2

]
, (from part (a)).

Node C sends a λ∗-message to its parent E:

λ∗CE =
[
P ∗(C = yes | E = no) , P ∗(C = yes | E = yes)

]
=

[
0.1 , 0.8

]
,

which is composed by using the formula

λ∗CE(a) = max
b∈{yes,no}

{
P (C = yes | E = a,M = b) · π∗MC(b)

}
, a = yes, no.

And it sends a λ∗-message to its parent M :

λ∗CM =
[
P ∗(e′ | M = no) , P ∗(e′ | M = yes)

]
=

[
0.10 , 0.10

]
,

which is composed by using the formula

λ∗CM (a) = max
b∈{yes,no}

{
P (C = yes | E = b, M = a) · π∗EC(b)

}
, a = yes, no.

For node E, using C’s message and L’s message λ∗LE =
[
0.2 , 1

]
(from part (c)), E can calculate

P ∗(E = no, e′) = P (E = no) · λ∗CE(no) · λ∗LE(no) = 0.018,

P ∗(E = yes, e′) = P (E = yes) · λ∗CE(yes) · λ∗LE(yes) = 0.08,

and from which it can conclude that E = yes in any most probable configuration given e′.
Similarly for node M . Using C’s message, M can calculate

P ∗(M = no, e′) = P (M = no) · λ∗CM (no) = 0.08,

P ∗(M = yes, e′) = P (M = yes) · λ∗CM (yes) = 0.02,

and from which it can conclude that M = no in any most probable configuration given e′.
Since both functions P ∗(M = ·, e′), P ∗(E = ·, e′) have a unique maximum, the most probable

configuration of (E,M) is unique and given by (E = yes,M = no). Furthermore,

P (E = yes,M = no, e′) = max
a,b∈{yes,no}

P (E = a,M = b, e′) = P ∗(E = yes, e′) = P ∗(M = no, e′) = 0.08,

and the probability of the most probable configuration can be calculated as

P (E = yes,M = no | e′) =
P ∗(M = no, e′)

P (e′)
=

P ∗(E = yes, e′)
P (e′)

=
0.08
0.118

= 0.678,

where P (e′) is obtained at the end of part (c).
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2. Consider the HMM below, in which the observation variables (black) depend on both the
current and previous states (white). Is the DAG singly connected? Explain how you would
apply the belief propagation algorithms for singly connected networks to inference under this
model.

Solution: This DAG is not singly connected. But we can consider an equivalent model with a
singly connected DAG, to which we can apply the belief propagation algorithms. Let (X1, . . . , Xn)
and (Y1, . . . Yn) be the state and observation variables, respectively, in the given HMM. Define

X̂i = (Xi−1, Xi), i = 1, . . . , n

with X0 being a dummy variable. Then (X̂1, . . . , X̂n) is a Markov chain and the joint distribution
of (X̂1, . . . , X̂n) and (Y1, . . . Yn) factorizes recursively according to the following singly connected
DAG:

(The transition and observation probability distributions are given by P (X̂i+1 | X̂i) = P (Xi+1 | Xi)
and P (Yi |X̂i) = P (Yi | Xi−1, Xi) respectively.)

Problem 3 (on the next page) is from Exercises 4.1 and 5.1 of Pearl’s 1988 book. It may help to
program the message passing algorithms to solve this problem.
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3. A language L has a four-character vocabulary V = {ε, A, B, C} where ε is the empty symbol.
The probability that character vi will be followed by vj is given by the following matrix:

P (vj |vi) =

vi

vj ε A B C

ε 1/4 1/4 1/4 1/4
A 1/2 0 1/4 1/4
B 1/8 1/2 1/8 1/4
C 1/4 1/8 1/2 1/8

In transmitting messages from L, some characters may be corrupted by noise and be confused
with others. The probability that the transmitted character vj will be interpreted as vk is
given by the following confusion matrix:

Pc(vk |vj) =

vj

vk ε A B C

ε .9 .1 0 0
A .1 .8 .1 0
B 0 .1 .8 .1
C 0 .1 .1 .8

The string, ε, ε, B, C,A, ε, ε is received, and it is known that the transmitted string begins and
ends with ε.

(a) Find the probability that the ith transmitted symbol is C, for i = 1, 2, . . . , 7.

(b) Find the probability that the string transmitted is the one received.

(c) Find the probability that no message (a string of ε’s) was transmitted.

(d) Find the message most likely to have been transmitted.

(e) Find the most likely seven-symbol string in L that starts and ends with ε.

Solution: (a) Let e denote the evidence that the string, ε, ε, B, C,A, ε, ε is received and the trans-
mitted string begins and ends with ε. For i = 1, . . . , 7, P (Vi = C |e) are given by

i : 1 2 3 4 5 6 7
0 0 0.1033 0.7881 0.0444 0 0

(b) The probability that the string transmitted is the one received is 0.4139.

(c) The probability that a string of ε’s was transmitted is 0.

(d) The message most likely to have been transmitted is the received string, εεBCAεε.

(e) There seem to be six most likely strings of length 7 and starting and ending with ε:

εCBAεAε, εAεCBAε, εBAεBAε, εBACBAε, εCBABAε, εCBCBAε.

(The third string differs from the fourth in the fourth symbol, and so does the fifth string from the
sixth string.) Acknowledgement: this non-uniqueness of the most probable strings was pointed out
to me by a participant of the class.


