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Markov Chains

Markov Chains

Some facts:

• Named after the Russian mathematician A. A. Markov

• The earliest and “simplest” model for dependent variables

• Has many fascinating aspects and a wide range of applications

• Markov chains are often used in studying temporal and sequence data,
for modeling short-range dependences (e.g., in biological sequence
analysis), as well as for analyzing long-term behavior of systems (e.g., in
queueing systems).

• Markov chains are also the basis of sampling-based computation
methods called Markov Chain Monte Carlo.

We introduce Markov chains and study a small part of its properties, most
of which relate to modeling short-range dependences.
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Markov Chains

A Motivating Example

Are DNA sequences purely random?

• A sequence segment of bases A, C, G, T from the human preproglucagon
gene:

GTATTAAATCCGTAGTCTGAACTAACTA · · ·

• “Words” – such as ‘CTGAC’ – are suspected to serve some biological
function if they seem to occur often in a segment of the sequence.

• So it is of interest to measure the “ofteness” of the occurrences of a
“word.” A popular way is to model the sequence at the “background.”

• Observed frequencies/proportions of pairs of consecutive bases from a
sequence of 1571 bases:

1st base
2nd base

A C G T

A 0.359 0.143 0.167 0.331
C 0.384 0.156 0.023 0.437
G 0.305 0.199 0.150 0.345
T 0.284 0.182 0.177 0.357

overall 0.328 0.167 0.144 0.360
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Markov Chains Definitions

Recall Definitions of Independence

Recall: for discrete random variables X , Y , Z with joint distribution P, by
definition

• X , Y , Z are mutually independent if

P(X = x , Y = y , Z = z) = P(X = x)P(Y = y)P(Z = z), ∀x , y , z ;

• X , Y are conditionally independent given Z , i.e., X ⊥ Y |Z , if

P(X = x |Y = y , Z = z) = P(X = x |Z = z), ∀x , y , z .

(Our convention: the equalities hold for all x , y , z such that the quantities involved

are well-defined under P.)

Let X1, X2, . . . be an indexed sequence of discrete random variables with
joint probability distribution P.

• If X1, X2, . . . are mutually independent, then by definition, for all n,

P(X1, X2, . . . , Xn) = P(X1)P(X2) · · ·P(Xn),

P(Xn+1 |X1, . . . , Xn) = P(Xn+1).
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Markov Chains Definitions

Definition of a Markov Chain

The sequence {Xn} is called a (discrete-time) Markov chain if it satisfies the
Markov property: for all n ≥ 1 and (x1, . . . , xn),

P(Xn+1 = xn+1 |X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 |Xn = xn), (1)

i.e., Xn+1 ⊥ X1, X2, . . . , Xn−1 | Xn.

Recall: the joint PMF of X1, X2, . . . Xn can be expressed as

p(x1, x2, . . . xn) = p(x1)p(x2 |x1)p(x3 |x1, x2) · · · p(xn |x1, x2, . . . xn−1).

The Markov property p(xi |x1, . . . , xi−1) = p(xi |xi−1), ∀i then implies that
p(x1, x2, . . . , xn) factorizes as

p(x1, x2, . . . , xn) = p(x1)p(x2 |x1) · · · p(xn |xn−1), ∀n. (2)

In turn, this is equivalent to that for all m > n,

p(xn+1, xn+2, . . . , xm |x1, x2, . . . , xn) = p(xn+1, xn+2, . . . , xm |xn).

Informally, the “future” is independent of the “past” given the “present.”
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Markov Chains Definitions

Terminologies

• Xn: the state of the chain at time n

• S = {possible xn, ∀n}: the state space (we assume S is finite)

• P(Xn+1 = j |Xn = i), i , j ∈ S : the transition probabilities

• The chain is said to be homogeneous, if for all n and i , j ∈ S ,

P(Xn+1 = j |Xn = i) = pij

independently of n; and inhomogeneous, otherwise.

• For a homogeneous chain, the |S | × |S | matrix26664
p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

...
...

pm1 pm2 · · · pmm

37775 where m = |S |,

is called the transition probability matrix of the Markov chain, ( or
transition matrix for short).
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Markov Chains Definitions

Graphical Model of a Markov Chain

The joint PMF of X1, X2, . . . Xn factorizes as

p(x1, x2, . . . , xn) = p(x1)p(x2 |x1) · · · p(xn |xn−1).

A pictorial representation of this factorization form:

• A directed graph G = (V , E)

• Vertex set:
V = {1, . . . , n}

• Edge set:
E = {(i − 1, i), 1 ≤ i < n}

• i is associated with Xi , ∀i ∈ V

nn-121 3

Each vertex i with its incoming edge  
represents a term in the factorized 
expression of the PMF p,

p(xi |xi−1).

This is a graphical model for Markov chains with length n.
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Markov Chains Definitions

Parameters of a Markov Chain: Transition Probabilities

Transition probabilities determine entirely the behavior of the chain:

p(x1, x2, . . . xn) = p(x1)p(x2|x1) · · · p(xn|xn−1)

= p(x1)
n−1Y
j=1

pxj xj+1 (for a homoneneous chain)

For a homogeneous chain, P is determined by {pij , i , j ∈ S} and the initial
distribution of X1. (Thus the number of free parameters is |S |2.)

Transition probability graph: another pictorial representation of a
homogeneous Markov chain; it shows the “structure” of the chain in the
state space:

1s 2s

3s 4s

1s
p

1s

1s
p

2s

1s
p

4s

2s
p

1s

2s
p

2s

2s
p

4s1s
p

3s

1
1

• Nodes represent possible states and arcs
possible transitions. (Not to be confused with

the graphical model.)

• Using this graph one may classify states as
being recurrent, absorbing, or transient –
notions important for understanding long term
behavior of the chain.
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Markov Chains Simple Examples

Simple Examples of DNA Sequence Modeling

A Markov chain model for the DNA sequence shown earlier:

• State space S = {A, C, G, T}
• Transition probabilities (taken to be the observed frequencies)

A C G T

A 0.359 0.143 0.167 0.331
C 0.384 0.156 0.023 0.437
G 0.305 0.199 0.150 0.345
T 0.284 0.182 0.177 0.357

A C

GT

• The probability of ‘CTGAC’ given the first base being ‘C’:

P(CTGAC |X1 = C) = pCT · pTG · pGA · pAC

= 0.437× 0.177× 0.305× 0.143 ≈ 0.00337.

(The probabilities soon become too small to handle as the sequence length

grows. In practice we work with ln P and the log transition probabilities

instead: lnP(CTGAC |X1 = C) = ln pCT + ln pTG + ln pGA + ln pAC. )
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Markov Chains Simple Examples

Simple Examples of DNA Sequence Modeling
Second-order Markov Chain:

• Joint PMF and graphical model

p(x1, x2, . . . xn) = p(x1, x2)p(x3|x1, x2) · · · p(xn|xn−1, xn−2)

21 3 4 nn-1

Correspondingly, {Yn} is a Markov chain where

Yn = (Yn,1, Yn,2) = (Xn−1, Xn), P(Yn+1,1 = Yn,2 |Yn) = 1.

Second-order model for the DNA sequence example:
• State space

S = {A, C, G, T} × {A, C, G, T}
• Size of transition probability matrix:

16× 16
The number of parameters grows

exponentially with the order.

• Transition probability graph (shown
partially on the right)

AA AC

CA

CC

CT

Higher order Markov chains are analogously defined.
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Markov Chains Simple Examples

Simple Examples of Language Modeling
A trivial example: the transition probability graph of a Markov chain that
can generate a sentence “a cat slept here” with start and end:

a

 the

dog

 cat

ate

 slept

here

 there
ℬ ℰ

start state

end state

Sequences of English generated by two Markov models:

• Third-order letter model:
THE GENERATED JOB

PROVIDUAL BETTER TRAND

THE DISPLAYED CODE,

ABOVERY UPONDULTS WELL

THE CODERST IN ...

• First-order word model:
THE HEAD AND IN FRONTAL ATTACK ON AN

ENGLISH WRITER THAT THE CHARACTER OF

THIS POINT IS THEREFORE ANOTHER

METHODS FOR THE LETTERS THAT THE

TIME OF WHO EVER TOLD ...

Applications in the biology and language modeling contexts include

• analyzing potentially important “words”

• sequence classification

• coding/compression
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Markov Chains Some Properties of Markov Chains

Two Extreme Cases

Two extreme cases

• If X1, X2, . . . are mutually independent, {Xn} is certainly a Markov
chain (of zeroth-order).

• If {Xn} is an arbitrary random sequence, then {Yn}, define by
Yn = (X1, X2, . . . Xn), is a Markov chain.
Because Yn+1 = (Yn, Xn+1) and in Yn the entire “past” is “kept.”

Notes: Consider a Markov chain {Xn}.
• At the current state xn = s, the past is not necessarily “forgotten.”

It may even happen that for some m < n, there is only one possible
path (sm, sm+1, . . . sn−1) for Xm, Xm+1, . . . , Xn−1 such that Xn = s.

• But each time the chain visits s, its behavior starting from s is
probabilistically the same regardless of the paths it took to reach s in
the past.
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Markov Chains Some Properties of Markov Chains

Geometrically Distributed Duration of Stay
The geometric distribution with parameter q ∈ [0, 1] has the PMF

p(m) = (1− q)m−1q, m = 1, 2, . . .

For independent trials each with success probability q, this is the distribution
of the number M of trials until (and including) the first success. The mean
and variance of M are

E [M] =
1

q
, var(M) =

1− q

q2
.

Consider a homogeneous Markov chain. Let s be some state with
self-transition probability pss > 0.

Let Ls be the duration of stay at s after entering s at some arbitrary time
n + 1:

Ls = m if Xn 6= s, Xn+1 = · · · = Xn+m = s, Xn+m+1 6= s,

Then, for m ≥ 1,

P(Ls = m | Xn 6= s, Xn+1 = s) = P(Ls = m | Xn+1 = s) = pm−1
ss (1− pss).

So the duration has the geometric distribution with mean 1
1−pss

.

Huizhen Yu (U.H.) Markov Chains and Markov Models Jan. 21 18 / 32



Markov Chains Some Properties of Markov Chains

Geometrically Distributed Duration of Stay

Geometric distribution has a memoryless property:

P
`
time of the first success = r + m | failed the first r trials

´
= p(m).

Illustration of geometric distributions with q = 1− pss :

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

p
(m
)

pss = 0.1

pss = 0.3

pss = 0.5

pss = 0.9

• The shape of such distributions
may not match that found in data.

• When the duration distribution
reflects an important aspect of the
nature of data, a general approach
is to model the duration
distribution explicitly by including
as part of the state variable the
time already spent at s after
entering s.
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Markov Chains Some Properties of Markov Chains

Subsequences of a Markov Chain

Let {nk} be a sequence of integers with 1 ≤ n1 ≤ n2 ≤ . . .
Let Yk = Xnk , k ≥ 1. Is {Yk} a Markov chain?

We check the form of the joint PMF p(y1, . . . , yk+1). We have

p(y1, . . . , yk+1) =
X

i<nk+1
i 6∈{n1,...,nk+1}

X
xi

p(x1, x2, . . . , xnk+1 ),

and by the Markov property of {Xn},

p(x1, x2, . . . , xnk+1 ) = p(x1, x2, . . . , xnk ) · p(xnk+1, xnk+2, . . . xnk+1 |xnk ).

So p(y1, . . . , yk+1) equals X
i<nk

i 6∈{n1,...,nk}

X
xi

p(x1, x2, . . . , xnk )

!
·

0@ X
nk<i<nk+1

X
xi

p(xnk+1, xnk+2, . . . xnk+1 |xnk )

1A ,

= p(xn1 , xn2 , . . . , xnk ) · p(xnk+1 |xnk ) = p(y1, y2, . . . , yk ) · p(yk+1 |yk ).

This shows
Yk+1 ⊥ Y1, Y2, . . . , Yk−1 | Yk ,

so {Yk} is a Markov chain.

Huizhen Yu (U.H.) Markov Chains and Markov Models Jan. 21 20 / 32



Markov Chains Some Properties of Markov Chains

Subsequences of a Markov Chain
The independence relation Xnk+1 ⊥ Xn1 , Xn2 , . . . , Xnk−1 | Xnk can actually be
“read off” from the graphical model:

1n k-1n21 kn k+1n

Xnk “separates” Xnk+1 from Xn1 , Xn2 , . . . , Xnk−1 in the graph. (The exact

meaning of this will be explained together with more general results in the future.)

A special choice of the index sequence {nk} is

nk = (k − 1) ·m + 1, for some fixed integer m > 1.

The corresponding Markov chain is X1, Xm+1, X2m+1, . . ..

The transition probabilities p
(m)
ij of this chain (homogeneous case) are the

m-step transition probabilities of the original chain:

p
(m)
ij = P(Xm+1 = j | X1 = i), ∀i , j ∈ S .

We examine next the relation between p
(m)
ij and pij , i , j ∈ S .
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Markov Chains Some Properties of Markov Chains

m-step Transition Probabilities of a Markov chain

The m-step transition probabilities p
(m)
ij satisfy the recursive formula

∀ 1 ≤ r ≤ m :

p
(m)
ij = P(Xm+1 = j |X1 = i) =

X
`∈S

P(Xr+1 = ` | X1 = i)P(Xm+1 = j |Xr+1 = `)

=
X
`∈S

p
(r)
i` p

(m−r)
`j , ∀i , j ∈ S . (3)

This is called the Chapman-Kolmogorov equation. (Once it was conjectured to

be an equivalent definition for Markov chains, but this turned out to be false.)

In matrix form, Eq. (3) can be expressed as

bP(m) = bPm = bP r · bPm−r , 1 ≤ r ≤ m.

where bP denotes the transition probability matrix of {Xn}, and bP(m) denotes

the m-step transition probability matrix with bP(m)
ij = p

(m)
ij , i , j ∈ S .
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Markov Chains Some Properties of Markov Chains

Reversing the Chain

Let X1, X2, . . . , Xn be a Markov chain.

Let Yk = Xn+1−k , 1 ≤ k ≤ n. Is {Yk} a Markov chain?

jX1X 2X nXn-1Xj+1X

kY 1Y2YnY n-1Y k-1Y

j, k:  j+k = n + 1

The joint PMF p(xj , xj+1, . . . , xn) can be expressed as

p(xj , xj+1, . . . , xn) = p(xj , xj+1) · p(xj+2, . . . , xn |xj+1)

= p(xj |xj+1) · p(xj+1) · p(xj+2, . . . , xn |xj+1)

= p(xj |xj+1) · p(xj+1, xj+2, . . . , xn),

so
p(xj |xj+1, . . . , xn) = p(xj |xj+1).

This shows the reversed sequence {Yk} is a Markov chain.
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Markov Chains Some Properties of Markov Chains

Another Conditional Independence Relation

Let X1, X2, . . . , Xn be a Markov chain.

Denote X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xn), all variables but Xj .
Then, for all j ≤ n,

P(Xj = xj |X−j = x−j) = P(Xj = xj |Xj−1 = xj−1, Xj+1 = xj+1). (4)

Visualize the positions of the variables in the graph:

21 j-1 nj+1j

Derivation of Eq. (4): the joint PMF p(xj , x−j ) can be written as

p(xj , x−j ) = p(x1, . . . , xj−1) · p(xj |xj−1)p(xj+1 |xj ) · p(xj+2, . . . , xn |xj+1),

so it has the form

p(xj , x−j ) = h(x1, . . . , xj−1) · g(xj , xj−1, xj+1) · ω(xj+1, . . . , xn)

for some functions h, g , ω. This shows (one of the exercises) that

Xj ⊥ X1, . . . , Xj−2, Xj+2, . . . , Xn

˛̨
Xj−1, Xj+1.
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A Brief View of Hidden Markov Models

Hidden Markov Models (HMM)
Hidden Markov Models refer loosely to a broad class of models in which

• a subset of the random variables, denoted by X = {X1, X2, . . .}, is
modeled as a Markov chain, and their values are not observed in
practice;

• the rest of the random variables, denoted by Y , are observable in
practice, and P(Y |X ) usually has a simple form.

A common case: Y = {Y1, Y2, . . .}, and conditional on X , Yi s are
independent with

P(Yi |X ) = P(Yi |Xi−1, Xi ).

(Treat X0 as a dummy variable.) The joint PMF of (X , Y ) then factorizes as

p(x , y) =
Y

i

p(xi |xi−1)p(yi |xi−1, xi ).

p(yi | xi−1, xi ): often called observation (or emission) probabilities

A graphical model indicating
the factorization form of p:

1X 2X nXn-1X

1Y 2Y nYn-1Y

3X

3Y

The sequence of (Xi , Yi ) jointly is a Markov chain.
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A Brief View of Hidden Markov Models

HMM and Data-Generating Processes

1X 2X nXn-1X

1Y 2Y nYn-1Y

3X

3Y

In some applications, the above structure of HMM corresponds intuitively to
the data-generating process: for instance,

• Speech recognition:
X – speech, Y – acoustic signals

• Tracking a moving target:
X – positions/velocities of the target, Y – signals detected

• Robot navigation:
X – positions of a robot, Y – observations of landmarks

In other applications, the model can have nothing to do with the underlying
data-generating process, and is introduced purely for questions at hand.
Examples include sequence alignment, sequence labeling applications.
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A Brief View of Hidden Markov Models

HMM for Parts-of-Speech Tagging

Parts-of-speech tags for a sentence:

pron v adv final punct.
I drove home .

• Possible tags:
I: n, pron
drove: v, n
home: n, adj, adv, v

Represent a sentence as a sequence of words W = (W1, W2, . . . , Wn). Let
the associated tags be T = (T1, T2, . . . , Tn).

A Markov chain model for (Wi , Ti ), 1 ≤ i ≤ n used in practice is:

p(w , t) =
nY

i=1

p(wi | ti )p(ti | ti−1, ti−2).

Question: Why W is treated as “generated” by T and not the other way
around?
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A Brief View of Hidden Markov Models

Another Artificial Example of Sequence Labeling

Suppose two different types of regions, type ‘+’ and type ‘-’, can occur in
the same DNA sequence, and each type has its own characteristic pattern of
transitions among the bases A, C, G, T. Given a sequence un-annotated with
region types, we want to find where changes between the two types may
occur and whether they occur sharply.

An HMM for this problem:

• Let Y = {Yi} correspond to a DNA sequence.

• Introduce variables Zi with zi ∈ {+,−} to indicate which type is in
force at position i .

• Let Xi = (Yi , Zi ), and model X = {Xi} as a Markov chain on
S = {A, C, G, T} × {+,−}.

Then, for an un-annotated sequence y , we solve

arg max
x

P(X = x |Y = y), equivalently, arg max
z

P(Z = z |Y = y).

Any z∗ in the latter set gives one of the most probable configurations of
boundaries between type ’+’ and type ’-’ regions for the sequence y .
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A Brief View of Hidden Markov Models

Inference and Learning with HMM
Quantities of interest in applications usually include

• P(Y = y), and P(X = x |Y = y) for a single x
• arg maxx P(X = x |Y = y), the most probable path given Y = y
• P(Xi |Y = y), the marginal distribution of Xi given Y = y ; and

arg maxxi
P(Xi = xi |Y = y)

Efficient inference algorithms are available – utilizing the
structure/factorization form of p, computation can be streamlined.

To specify an HMM, we need to specify its topology (space of Xi , relation
between {Xi} and {Yi}), and then its parameters.

Parameters of HMM in the earlier examples:
transition probabilities and observation probabilities

Parameter estimation:
• Complete data case: sequences of states {xi} are given for estimation

This case reduces to the case of Markov chains.
• Incomplete data case: sequences of states {xi} are unknown

In this case estimation is based on the observed sequences of {yi}, and
is typically done with the so-called expectation-maximization (EM)
algorithm.

We will study these topics in some future lectures.
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A Brief View of Hidden Markov Models

HMM vs. High Order Markov Models

In the application contexts shown earlier, the main interest is on the
hidden/latent variables {Xi}.

Consider now the case where our interest is solely on {Yi} (for instance, to
predict Yn+1 given Y1, . . . , Yn). We compare two choices of models for {Yi}:

• a Markov model for {Yi}, possibly of high order;

• an HMM for {Yi}, in which we introduce auxiliary, latent random
variables {Xi}.

In an HMM for {Yi},

p(y1, y2, . . . , yn) =
X

x1,...,xn

nY
i=1

p(xi |xi−1) p(yi |xi−1, xi ),

so generally, Y1, . . . , Yn are fully dependent as modeled.

In a Markov or high order Markov model, certain conditional independence
among {Yi} is assumed.

This shows with HMM we approximate the true distribution of {Yi} by
relatively simple distributions of another kind than those in a Markov or high
order Markov model.
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A Brief View of Hidden Markov Models

Further Readings

On Markov chains:

1. A. C. Davison. Statistical Models, Cambridge Univ. Press, 2003.
Chap. 6.1.

(You may skip materials on pp. 229-232 about classification of states if not

interested.)
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