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Bayesian Networks Overview

Directed Acyclic Graphs

Notation and definitions for a directed graph G = (V , E):

• V : the set of vertices

• E : the set of directed edges; (α, β) ∈ E means there is an edge from
vertex α to vertex β.

• If (α, β) ∈ E , we say α is a parent of β and β is a child of α.

• We denote the set of parents of a vertex α by pa(α), and the set of its
children by ch(α).

• cycle: a path that starts and ends at the same vertex.

A directed acyclic graph (DAG) is a directed graph that has no cycles.

Let G be a DAG and X = {Xv , v ∈ V } discrete random variables associated
with V . We say P(X ) factorizes recursively according to G if

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
.

Examples we have seen: Markov chains, HMMs
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Bayesian Networks Overview

Comparison between DAG and MRF

DAG:

• Dependence structure is specified hierarchically.

• Edges represent direct or causal influence.

Undirected graphs/MRF:

• Neighborhood relationship is symmetric.

• Edges represent interaction/association.

Graphs having both directed and undirected edges are called chain graphs; they can

represent both kinds of dependence and are more general than DAG or MRF. (We

will not study them, however.)
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Bayesian Networks Overview

Building and Using Models

Three phases of developing a Bayesian network:

(i) Building models

• Specify random variables

• Specify structural dependence between variables

• Assign conditional probabilities to components of the model

(ii) Constructing inference engine

• Compile the model: representations convenient for computation
(answering queries) are created internally.

(iii) Using the inference engine for case analysis

Parameter learning/adaptation based on data links (iii) partially to (i).
Structural learning/adaptation is an active research topic.

In this lecture, we illustrate model building with simple examples.
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Bayesian Networks Building Models

Model Elements

Random variables:

• Hypothesis variables:
their values are unobservable, but of interest in our problem.

• Information variables:
their values are observed and informative about the hypothesis
variables.

• Mediating variables:
related to the underlying physical process, or introduced just for
convenience.

Dependence structure: DAG

Conditional probabilities {p(xv |xpa(v))} for model components

Specifying variables in the model is the first step of model building and very
important in practice, although in studying the theory we have taken it for
granted.
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Bayesian Networks Building Models

Example I: Family Out?

Description:

When I go home at night, I want to know if my family is at home
before I try the door. Often when the family leaves, an outdoor
light is turned on. However, sometimes the light is turned on if the
family is expecting a guest. Also, we have a dog. When nobody
is at home, the dog is put in the back yard. The same is true if
the dog has bowel trouble. Finally, if the dog is in the back yard,
I will probably hear her barking, but sometimes I can be confused
by other dogs barking.

Hypothesis variable:

• Family out? (F-out)

Information variables:

• Light on? (L-on)

• Hear dog barking? (H-bark)

1st model of causal structure

F-out

L-on H-bark
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Bayesian Networks Building Models

Example I: Family Out?

We now specify (subjective) conditional probabilities for the model.

For P(F-out):
One out of five week days, my family
is out; so I set

F-out = y F-out = n

0.2 0.8

For P(L-on | F-out):
The family rarely leaves home without
turning the light on. But sometimes
they may forget. So I set

L-on = y L-on = n

F-out = y 0.99 0.01
F-out =n ? ?

F-out

L-on H-bark

How to specify the rest of the probabilities for
P(L-on | F-out = n) and P(H-bark | F-out)?
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Bayesian Networks Building Models

Example I: Family Out?

Introduce mediating variables for assessing probabilities:

• Expect guest? (Exp-g)

For P(L-on | F-out = n):
We have guests three times a month, so

P(Exp-g = y | F-out = n) = 0.1,

P(L-on = y | Exp-g = y , F-out = n) = 1,

and

P(L-on = y | F-out = n) = 0.1.

I set

L-on = y L-on = n

F-out = y 0.99 0.01
F-out =n 0.1 0.9

2nd model

F-out

L-on H-bark

Exp-g

Back to 1st model

F-out

L-on H-bark
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Bayesian Networks Building Models

Example I: Family Out?

Introduce mediating variables for assessing probabilities P(H-bark | F-out):

• Dog out? (D-out)

• Bowel problem? (BP)

For P(BP): I set BP = y BP = n

0.05 0.95

For P(D-out | F-out, BP):
Sometimes the dog is out just because
she wants to be out:

P(D-out = y | F-out = n, BP = n) = 0.2.

After some reasoning . . . , I set
P(D-out = y | F-out, BP) to be

BP = y BP = n

F-out = y 0.994 0.88
F-out =n 0.960 0.2

For P(H-bark | D-out):
Sometimes I can confuse the barking of
the neighbor’s dog with that of mine.
Without introducing another mediating
variable, I take this into account in the
probability assessment by setting

H-bark = y H-bark = n

D-out = y 0.6 0.4

D-out = n 0.2 0.8

3rd model

F-out

L-on D-out

H-bark

BP
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Bayesian Networks Building Models

Example I: Family Out?

In this example, if mediating variables will never be observed, we can
eliminate (marginalize out) them and get back to the 1st model with the
corresponding probabilities:

F-out

L-on D-out

H-bark

BP

=⇒

F-out

L-on H-bark

We can verify this directly. Alternatively, we
can also use the global Markov property on
undirected graphs:
P of the larger model factorizes according to
the graph on the right. The vertex set {F-out}
separates {L-on} from { H-bark}, so

L-on ⊥ H-bark | F-out.

F-out

L-on D-out

H-bark

BP
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Bayesian Networks Building Models

Example II: Insemination

Description:

Six weeks after insemination of a cow there are three tests for the
result: blood test (BT), urine test (UT) and scanning (Sc). The
results of the blood test and the urine test are mediated through
the hormonal state (Ho) which is affected by a possible pregnancy
(Pr). For both the blood test and the urine test there is a risk that
a pregnancy does not show after six weeks because the change in
the hormonal state may be too weak.

Hypothesis variable:

• Pregnant? (Pr)

Information variables:

• Blood test result (BT)

• Urine test result (UT)

• Scanning result (Sc)

Mediating variable:

• Hormonal state (Ho)

1st naive Bayes model
without the variable Ho

Pr

UTBT Sc
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Bayesian Networks Building Models

Example II: Insemination

Over-confidence of Naive Bayes model:

1st naive Bayes model without
the variable Ho

Pr

UTBT Sc

Pr = y Pr = n

0.87 0.13

BT = y BT = n

Pr = y 0.64 0.36
Pr =n 0.106 0.894

UT = y UT = n

Pr = y 0.73 0.27
Pr =n 0.107 0.893

Sc = y Sc = n

Pr = y 0.9 0.1
Pr =n 0.01 0.99

BT and UT results are counted as two inde-
pendent pieces of evidence:

P(BT = n | Pr = n)P(UT = n | Pr = n)P(Pr = n)

= 0.894 · 0.893 · 0.13

P(BT = n | Pr = y)P(UT = n | Pr = y)P(Pr = y)

= 0.36 · 0.27 · 0.87

and

P(Pr = n | BT = n, UT = n)

=
0.894 · 0.893 · 0.13

0.894 · 0.893 · 0.13 + 0.36 · 0.27 · 0.87

≈ 0.55.
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Bayesian Networks Building Models

Example II: Insemination
2nd model with the mediating variable Ho

Pr

Sc

UTBT

Ho

Pr = y Pr = n

0.87 0.13

Ho = y Ho = n

Pr = y 0.9 0.1
Pr =n 0.01 0.99

BT = y BT = n

Ho = y 0.7 0.3
Ho =n 0.1 0.9

UT = y UT = n

Ho = y 0.8 0.2
Ho =n 0.1 0.9

We calculate P(Pr = n | BT = n, UT = n):

P(Pr = n, BT = n, UT = n) =
X

x∈{y,n}
P(BT = n | Ho = x)P(UT = n | Ho = x)P(Ho = x | Pr = n)P(Pr = n)

= 0.3 · 0.2 · 0.01 · 0.13 + 0.9 · 0.9 · 0.99 · 0.13 ≈ 0.1043

P(Pr = y, BT = n, UT = n) =
X

x∈{y,n}
P(BT = n | Ho = x)P(UT = n | Ho = x)P(Ho = x | Pr = y)P(Pr = y)

= 0.3 · 0.2 · 0.9 · 0.87 + 0.9 · 0.9 · 0.1 · 0.87 ≈ 0.1175

and P(Pr = n | BT = n, UT = n) ≈
0.1043

0.1043 + 0.1175
≈ 0.47.

(Naive Bayes prediction: 0.55)

Huizhen Yu (U.H.) Introduction to Bayesian Networks Feb. 4 16 / 31



Bayesian Networks Building Models

Example II: Insemination

Mediating variable can play another important role, as shown here:

• There is dependence between the results of blood test (BT) and urine
test (UT). But there is no causal direction in the dependence, and we
are also unwilling to introduce a directed edge between the two
variables.

• By introducing a mediating variable as their parent variable, we create
association – like an undirected edge – between BT and UT when the
mediating variable is not observed.

Pr

Sc

UTBT

Ho
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Bayesian Networks Building Models

Example III: Stud Farm
Description:

A stud farm has 10 horses. Their geneological structure is shown
below. Ann is the mother of both Fred and Gwenn, but their fathers
are unrelated and unknown. Every horse may have three genotypes:
it may be sick (aa), a carrier (aA), or he may be pure (AA). None of
the horses are sick except for John, who has been born recently. As
the disease is so serious, the farm wants to find out the probabilities
for the remaining horses to be carriers of the unwanted gene.

Hypothesis variables:

• genotypes of all the horses except for
John

Information variable:

• John’s genotype

Additional information:

• none of the other horses are sick

Mediating variables:

• genotypes of the two unknown
fathers (L, K)

CecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene
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Bayesian Networks Building Models

Example III: Stud Farm

Introduce mediating variables L and K:

KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L

The probabilities P(child | father, mother)
of a child’s genetic inheritance: numbers are
probabilities for (aa, aA, AA)

aa aA AA

aa (1, 0, 0) (0.5, 0.5, 0) (0, 1, 0)

aA (0.5, 0.5, 0) (0.25, 0.5, 0.25) (0, 0.5, 0.5)

AA (0, 1, 0) (0, 0.5, 0.5) (0, 0, 1)

Prior probability of a horse being
a carrier or pure:

aA AA

0.01 0.99
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Bayesian Networks Building Models

Example III: Stud Farm

We can add evidence variables to represent the additional information that
the other horses are not sick:

e-∗ = {not aa}, graph partially shown

Ann Brian

DorothyFred

Henry

L

e-F

e-H

e-D

e-B

e-A

Now we have specified the model. (How to compute the probability of a
horse being a carrier given all the evidence?)
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Bayesian Networks Modeling Tricks

Overview of the List

For handling undirected relations and constraints

• Mediating variables

For reducing the number of parameters in the model

• Noisy-or and its variants

• Divorcing (grouping) parents

For handling expert disagreement and model adaptation
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Bayesian Networks Modeling Tricks

Handling Undirected Relations and Constraints
Suppose A, B, C are variables that do not have parents. They are marginally
dependent with PMF r(a, b, c), but it is undesirable to link them with
directed edges.

Introduce variable D, and define

P(D = y | A = a, B = b, C = c) = r(a, b, c),

P(D = n | A = a, B = b, C = c) = 1− r(a, b, c).

Let P(A), P(B), P(C) be uniform distribu-
tions. When using the network, we always en-
ter the evidence D = y . Now

P(A = a, B = b, C = c | D = y) = r(a, b, c).

D

A B C

Constraints can be handled similarly. In this case A, B, C can also have
parents. If they have to satisfy f (A, B, C) = 0, we let

P(D = y | A = a, B = b, C = c) =

(
1 if f (a, b, c) = 0,

0 otherwise.

and we always let D = y . (For an example, see the washed-socks example in

reference [1].)
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Bayesian Networks Modeling Tricks

Noisy-Or Gate

A typical network for modeling causes and consequences: e.g.,

• {Xi}: the presences of n possible
diseases

• Y : the symptom
Y

X X X1 2 n

Difficulty in building/using the model:

• # parameters grows exponentially with the number of parents:

Even if variables are all binary, the size of the conditional probability
table p(y |x1, . . . , xn) is 2n+1 with 2n free parameters.

Noisy-or trick is useful for reducing the number of parameters, when each
cause is thought to act independently.
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Bayesian Networks Modeling Tricks

Noisy-Or Gate

“Noisy-or” assumption (binary case):

• Each event Xi = 1 can cause Y = 1
unless an inhibitor prevents it.

• The inhibition probability is qi , and
the inhibitors are independent. Y

X X X1 2 n

1 - q 1
1 - q 2

1 - q n

The conditional probabilities of
y0 = 0, y1 = 1:

p(y0 |x1, . . . , xn) =
Y

i :xi =1

qi ,

p(y1 |x1, . . . , xn) = 1−
Y

i :xi =1

qi .

• # parameters is now linear in the
number of parents.

Corresponding graphical model:

Y

Y YY1 2 n

X X X1 2 n

Y1 Y2 YnY = OR( , , ... )

Generalization: “noisy-and,” “noisy-max,” “noisy” functional dependence.
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Bayesian Networks Modeling Tricks

Noisy-Or: Family-Out? Example

In the Family-out? example, to assign probabilities P(D-out | F-out, BP), I
reason that there are three causes for the dog to be out, and if any one of
them is present, the dog is out:

• the “background event” that the dog wants to be out: probability 0.2;

• F-out = y , which causes the dog to be out with probability 0.85;

• BP = y , which causes the dog to be out with probability 0.95.

Then P(D-out = y | F-out, BP) is given by

BP = y BP = n
F-out = y 1 − 0.8 · 0.05 · 0.15 1 − 0.8 · 0.15
F-out =n 1 − 0.8 · 0.05 1 − 0.8

which gives

BP = y BP = n
F-out = y 0.994 0.88
F-out =n 0.960 0.2

F-out

L-on D-out

H-bark

BP
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Bayesian Networks Modeling Tricks

Noisy Functional Dependence

Example: Headache

Headache (Ha) may be caused by fever (Fe), hangover (Ho), fibrositis
(Fb), brain tumor (Bt), and other causes (Ot). Let Ha has states
no, mild, moderate, severe. The various causes support each other in
the effect. We still feel however that the impacts of the causes are
independent: if the headache is at level `, and we add an extra cause
for headache, then we expect the result to be a headache at level q
independent of how the initial state has been caused. We want to
combine the effects of various causes.

BtFbFeOt Ho

Ha-BtHa-FbHa-FeHa-Ot Ha-Ho

Ha
Node Ha adds up the numbers
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Bayesian Networks Modeling Tricks

Mediating Variables for “Divorcing” Parents

B

A A1 A2 4A3 A A1 A2 4A3

B

C

Example: Bank Loan

To help the bank decide when a customer applies for a mortgage, the
customer is asked to fill in a form giving information on: type of job,
yearly income, other financial commitments, number and type of cars
in the family, size and age of the house, price of the house, number
of previous addresses during the last five years, number of children in
the family, number of divorces, and number of children not living in the
family.

We can partition the 10 variables into three mediating variables describing:
economic potentials, stability, and security of the mortgage.
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Bayesian Networks Modeling Tricks

Headache Example with “Divorcing”

Ha-x

Ha-BtHa-FbHa-FeHa-Ot Ha-Ho

Ha

Ha-y

Ha-z
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Bayesian Networks Modeling Tricks

Expert Disagreement and Model Adaptation
Suppose two experts agree on the model structure for A, B, C , D, but
disagree on the probabilities P(A) and P(D | B, C).

D

A B

C

D

A B

C

S

We can add a node S representing the experts, s ∈ {1, 2}, and express our
confidence in the experts via P(S).

Similarly, we can prepare for adapta-
tion of model parameters based on
data by introducing a type variable T
and copying other variables for each
case:

A B

C

T

A B

C

Case 1 Case 2
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Bayesian Networks Modeling Tricks

Further Readings

For an introduction to building models:

1. Finn V. Jensen. An Introduction to Bayesian Networks. UCL Press,
1996. Chap. 3.

2. Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and
Decision Graphs. Springer, 2007. Chap. 3.

[2] describes more advanced models such as object-oriented Bayesian
networks.
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