Learning with Missing Data
Handling Missing Data

- Different types of missing data: missing completely at random, missing at random, not missing at random.

- Latent (hidden) variable models, like the finite mixture model, always have to deal with hidden data.

- We either are interested in the missing data (e.g., we could be interested in the values of the a hidden variable if it corresponds to a clustering of data), or it is treated as "nuisance" (e.g., if the hidden "class" variable is only used as a modeling tool to produce a joint probability distribution on the observed variables).

- In the latter case, a Bayesian attempts to marginalize over the hidden data.
The Finite Mixture Model

- With hidden data imposed by C, it is computationally infeasible to compute
 - Maximum likelihood parameters
 - Expected parameters (or max. posterior)
 - Marginal likelihood
- Model "structure" learning: how many values for C?

\[
P(D) = P(X_1^n, \ldots, X_5^n) \\
= \sum_{C^n} P(C^n) P(X_1^n, \ldots, X_5^n|C^n) \\
= \sum_{C^n} P(C^n) \prod_{i} P(X_i^n|C^n)
\]
K-Means

- Normally, a geometric clustering algorithm
- A probabilistic version:
 1. Start with a random initial clustering $c_1,...,c_n$
 2. Build a model Θ using complete data (X^n,C^n)
 3. Using Θ, assign each data vector X independently to it's most probable cluster (i.e., find max $P(C_i | X_i, \Theta)$ for all i)
 4. Go to 2.
Expectation Maximization (EM)

- A "soft" version of K-Means
- Intuitively: data vectors are assigned "fractionally" to each cluster (with the fractions determined by the classification probabilities)
- The new model Θ is computed from semi-complete data (fractional sufficient statistics)
- For HMMs: the Baum-Welch algorithm
K-Means and EM in practice

- Both provably monotonically improve the likelihood (or posterior), so they converge to a local optimum only
- Convergence can be slow
- To get reasonable results, need to repeat several runs from different starting points
- Can be used together: e.g., first run K-means, then continue with EM
- Can be used to find good starting points for other heuristics
Structure learning with FMM's

- Can find models Θ using different number of values for the hidden variable (different number of parameters)
- Which Θ to choose? (max. likelihood chooses always the model obtained with the highest number of parameters)
- Computing the marginal likelihood not feasible with the missing data imposed by the hidden variable

\[
P(K|D) \propto P(D|K) P(K)
\]
\[
P(D|K) = \int P(D|K, \theta) P(\theta|K) d\theta
\]
\[
P(D|K, \theta) = \prod_i \sum_k^K P(d_i|c_k, \theta) P(c_k|\theta)
\]
Approximating the marginal likelihood

- Laplace (Gaussian) approximation
- Bayesian Information Criterion (BIC)
- Akaike Information Criterion (AIC)
- Missing data completion
- Stochastic methods (MCMC etc.)
- Variational methods
Laplace's method / Gaussian approximation

• Based on Taylor approximation at the maximum likelihood parameters:

\[- \log P(D|M) \approx - \log P(D|M, \hat{\theta}) - \log P(\hat{\theta}|M) + \frac{d}{2} \log \frac{n}{2\pi} + \log \sqrt{|I(\hat{\theta})|} \]

• Here "d" is the number of parameters, "n" is the size of the data, and \(|I(\Theta)|\) is the determinant of the Fisher information matrix at \(\Theta\)

• A "penalized log-likelihood" criterion: likelihood grows with more complex models, but it compensated by the penalizing factors

• Jeffreys' prior:

\[P(\theta|M) = \frac{\sqrt{|I(\theta)|}}{\int \sqrt{|I(\theta)|} d\theta} \]
BIC and AIC

- **BIC:** $- \log P(D|M) \approx - \log P(D|M, \hat{\theta}) + \frac{d}{2} \log n$

- **AIC:** $- \log P(D|M) \approx - \log P(D|M, \hat{\theta}) + d$

- Both converge **asymptotically** to the marginal likelihood (minus a constant)

- Hence marginal likelihood is also in a sense a penalized maximum likelihood criterion!

- It is a non-trivial problem to determine the "correct" value of d
Missing data completion

- Direct marginalization not feasible:

\[
P(X^n|M) = \sum_{C^n} P(X^n, C^n|M) = \sum_{C^n} P(X^n|C^n, M) P(C^n|M)
\]

- \(C^n\) is like an unknown "parameter"

- If you cannot marginalize over a parameter, you can try to maximize it

\[
P(X^n|M) \propto \max_{C^n} P(X^n|C^n, M) P(C^n|M)
\]

- As the "parameter" \(C^n\) is actually data, it is easy to think of reasonable "priors" \(P(C^n|M)\)

- With fixed \(M\), \(C^n\) can be optimized with K-means, EM, or whatever...
Supervised BN Learning

- **Parameter learning**
 - Generative modeling: Find \(\arg \max_\theta P(\mathbf{X}^n, \mathbf{C}^n | \mathbf{M}, \theta) \)
 - Discriminative modeling: Find \(\arg \max_\theta P(\mathbf{C}^n | \mathbf{X}^n, \mathbf{M}, \theta) \)
 - In general, the result is not the same!

- **Structure learning**
 - Generative modeling: Find \(\arg \max_M P(\mathbf{X}^n, \mathbf{C}^n | \mathbf{M}) \)
 - Discriminative modeling: Find \(\arg \max_M P(\mathbf{C}^n | \mathbf{X}^n, \mathbf{M}) \)
 - In general, the result is not the same!
 - Marginal conditional likelihood not feasible
 - Kontkanen et al. (UAI 1999): approximations, connection to cross-validation
Optimizing the conditional likelihood

- Bad news: even for the Naive Bayes model, the maximum of the conditional likelihood cannot be presented in closed form
- Good news: For some Bayesian networks (e.g., NB and TAN), the conditional log-likelihood space is concave (Roos et al., MLJ 2005) → it has a single global optimum
- "Supervised" Naive Bayes = logistic regression
- For model structure learning: marginal conditional likelihood not feasible (Kontkanen et al., UAI 1999)
Models with many hidden nodes

- Is it sensible to first learn a Bayesian network (NP-hard) and then try to transform it to a simpler representation for probabilistic inference (NP-hard)?
- How about learning directly structures where inference is easy?
Dynamic Bayesian networks

- Complex Markov models involving temporal dependencies
Undirected Graphical Models
Definitions of independence

• Following definitions equivalent for $X_1 \perp X_2 \mid Z$:

 - $p(X_1, X_2 \mid Z) = p(X_1 \mid Z)p(X_2 \mid Z)$ whenever $p(Z) > 0$
 - $p(X_1 \mid X_2, Z) = p(X_1 \mid Z)$ whenever $p(X_2, Z) > 0$
 - $p(X_2 \mid X_1, Z) = p(X_2 \mid Z)$ whenever $p(X_1, Z) > 0$
 - $p(X_1, X_2, Z) = f(X_1, Z)g(X_2, Z)$ for non-negative functions $f(\cdot), g(\cdot)$

• Definitions symmetric in X_1 and X_2
Image models

- The graph on the right says that each pixel is influenced only by its neighbors.
Undirected graphical models

- Local Markov property:
 - $X \perp (\text{G-nbrs}(X)-\{X\}) \mid \text{nbrs}(X)$
 - Minimal independence properties to uniquely determine a graph

- Global Markov property:
 - For all X_1,X_2,Z: $X_1 \perp X_2 \mid Z$ iff X_1 is separated in the graph from X_2 by Z.
 - How to test for independence

- Functional form: $P(X_1,\ldots,X_n) = \prod_{C} f_C(X_C)$
 - Product over cliques C (X_C denoting the members of the clique)
 - Definition for purposes of computation
For example...

- **Local Markov property:**
 - E.g.: $B \perp E,F \mid A,C,D$; $C \perp A,F \mid B,D,E$;
 - **Global Markov property:**
 - E.g.: $A,B \perp E,F \mid C,D$.
- **Functional form:**
 - $P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)$
The three properties are equivalent

- Global Markov property implies the local
- Functional form implies the global Markov property
- Hammersley-Clifford theorem: Local Markov property implies the functional form (for discrete variables)
Markov Random Fields

- Undirected graphical models, a.k.a. Markov networks

- Typically use alternative functional form:
 \[P(X) = \frac{1}{Z} \exp \left(\sum_C \alpha_C f_C(X_C) \right) \]

- Sometimes also called the Gibbs distribution

- The cliquewise functions \(f_C \) are called **clique potentials**

- The normalizer \(Z \) is called the **partition function**
Mapping a DAG to a MRF is possible...

- Mapping is straightforward if a node and its parents in a DAG belong to the same clique in the MRF

\[
\prod_i P(X_i | Pa_i) \rightarrow \prod_C f_C(X_C)
\]

- This means that to get the corresponding MRF, we need to "marry" nodes with common children (this is called moralizing the graph)

- It follows that inference in undirected graphs is NP-hard too...
...but DAGs and MRFs are not equivalent independence models

- $A \perp D \mid B, C$ and $B \perp C \mid A, D$

- $A \perp B$ and $A \not\perp B \mid C$
Final remarks

- The Bayesian framework offers an elegant, consistent formalism for uncertain reasoning.
- The basic principle is simple: compute the probability of what you want to know while marginalizing over the other unknown factors.
- We have focused on the discrete Dirichlet-multinomial case and directed acyclic graphs (Bayesian networks), but the same principles apply with other probabilistic model families as well.
- Graphical models offer a unifying framework where many popular methods are easily understood.
 - E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman filter, switching Kalman filter, AR models,...
 - See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html