
C Programming, Chapter 1: C vs. Java, Types, Reading
and Writing

T. Karvi

August 2013

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 1 / 1



C and Java I

Although the syntax of Java and C are very similar, they are very different
languages. The following table shows some of the major differences:

C Java
Procedural Object-oriented
Compiled Interpreted
No Memory Management Memory Management
Pointers References
Error Codes Exceptions

Object-Oriented vs. Procedural:

One of the largest differences between Java and C is the use of a
different programming paradigm. Java is an Object- Oriented
language. A Java program consists of a collection of objects. These
objects contain the data used in the program, and have methods to
perform operations on this data.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 2 / 1



C and Java II

The C language is procedural. A C program consists of a collection of
procedures (or functions). The data used by the program can be put
into local variables (inside of a function) or global variables (outside
of functions) There is no notion of objects in C. Just like in Java,
there is a special main function,Interpreted vs. Compiled Java is an
interpreted language. Java source code is transformed to bytecode,
which is then loaded by a program called an interpreter. This program
then ’executes’ each of the bytecode instructions one by one,
translating them into something the machine understands. C
programs are compiled. Instead being translated to some intermediate
format (like bytecode) it is translated directly into machinecode. This
machinecode is directly executed by the processor. which is used to
start the program.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 3 / 1



C and Java III

Interpreted vs. Compiled:

Java is an interpreted language. Java source code is transformed to
bytecode, which is then loaded by a program called an interpreter.
This program then ’executes’ each of the bytecode instructions one by
one, translating them into something the machine understands.

C programs are compiled. Instead being translated to some
intermediate format (like bytecode) it is translated directly into
machinecode. This machinecode is directly executed by the processor.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 4 / 1



C and Java IV

Memory Management vs. NoMemoryManagement:

In Java, the memory management is done automatically by the
system. New objects can be created using the new keyword. When
objects are no longer used (i.e., no longer have any references
pointing to them) they are removed by the garbage collector.

In C, the programmer has to do his own memory management. Using
the keyword sizeof and the library calls malloc and free, blocks of
memory can be allocated and freed.

References vs. Pointers:

A reference in Java is a special variable which references (points-to)
an object. Only objects can be referenced. For example, it is not
possible to have a reference to an int.

Pointers in C are in some ways similar to references in Java (they
point to things), but in many ways they are very different.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 5 / 1



C and Java V

Exceptions vs. Error Codes:

Whenever an error occurs in Java, an exception is thrown.

C has no exceptions. A function either returns some error code (when
an error is expected), or your program crashes (usually long after the
error has occurred).

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 6 / 1



Example I

#include <stdio.h>

double value;

/* This is a comment */

int main(void)

{

int local = 0;

value = 0.42;

printf("local = %d value = %f\n", local, value);

return 0;

}

The program starts with the line #include <stdio.h>, which is
actually not C-code, but a preprocessor directive. The preprocessor is
a special program which pre-processes the C program before it is
compiled. All statements beginning with # are preprocessor directives.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 7 / 1



Example II

The purpose of the #include <stdio.h> statement is similar to an
’import’ in Java. It imports a header file called stdio.h into this
program. Header files contain descriptions (or prototypes) of
functions and types which are implemented and defined somewhere
else. They usually have the extension ’.h’. By importing the header
file stdio.h, the functions and type described in that file can be used in
this file (in this case we are interested in using the ’printf’ function).

The next line ’double value;’ defines a global variable. Global
variables are variables which are defined outside the scope of a
function. They exist throughout the lifetime of the program (they are
created when the program starts and destroyed when the program
exits). Because they are global, they can be ’seen’ and used in every
function in this file.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 8 / 1



Example III

After the comment ’/* This is a comment */’ (which is similar to a
Java comment) the special startup function ’int main(void)’ is
declared, which returns an ’int’ result, and takes no parameters. In C
programs, it is customary to return an ’int’ result from the ’main’
function. A result of 0 indicates that no error has occurred. Any
other value indicates an error. When a function in C takes no
parameters, this is indicated by the (void) parameter list.

The ’int local = 0;’ line declares a local variable in the main function
The rules in C for declaring local variables are a little different from
Java. All local variables must be declared at the beginning of the
function. Declaring them at a later point will result in a compile time
error.

After declaring the local variable, a value is assigned to the global
variable in the statement ’value = 0.42;’. The values of the variables
are then printed to the screen using the ’printf(”local = statement.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 9 / 1



Example IV

Finally, a value of 0 is returned (return 0;) to indicate that the
program has finished without any errors.

We can now compile the C program using the following command:
gcc myprogram.c

In this example, the C compiler is called ’gcc’ (this stands for GNU C
Compiler. The result is an executable file, called ’a.out’ which we can
run.
./a.out

Our program then produces the following output:
local = 0 value = 0.420000

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 10 / 1



Integer Types I

There are three basic integer types, all with two version: short int,
unsigned short int, int, unsigned int, long int, unsigned long int.

One way to determine the ranges of the integer types for a particular
implementation is to check the limits.h header, which is part of the
standard library. For example, the usual range for an int variable x is
−2147483648 ≤ x ≤ 2147483647 on 32-bit and 64-bit machines.

You can get the size of a type in bytes using the function sizeof.

C99 provides two additional standard integer types, long long int and
unsigned long long int.

C allows integer constants to be written in decimal, octal, or
hexadecimal:

Decimal 15 255 32767
A decimal constant cannot start with zero 0.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 11 / 1



Integer Types II

Octal An octal constant must start with zero and a constant
contains only digits 0,...,7.
017 0377 077777

Hexadecimal starts with 0X or 0x and a constant contains digits
0,...,9 and letters a,...,f (upper or lower case):
0xff 0xfF 0xFf OXFF

To force the compiler to treat a constant as a long integer, just follow
it with the letter L or l: 15L, 0377L, 0x7fffL.

To indicate that a constant is unsigned, put the letter U or u after it:
15U, 0377U, 0x7fffU.

L and U may be used in combination to show that a constant is both
long and unsigned: 0xffffffffUL.

In C99, integer constants that end with either LL or ll have type long
long int.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 12 / 1



Integer Types III

When integer overflow occurs during an operation on signed integers,
the program’s behaviour is undefined. When overflow occurs during
an operation on unsigned integers, the result is defined: we get the
correct answer modulo 2n, where n is the number of bits used to store
the result.

Reading and writing integers:

int i;

scanf("%d", &i);

printf("%d",i);

Reading and writing unsigned integers:

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 13 / 1



Integer Types IV

unsigned int u;

scanf("%u", &u);

printf("%u",u);

scanf("%o", &u); /* reads u in base 8 */

printf(%o",u); /* writes u in base 8 */

scanf("%x", &u); /* reads u in base 16 */

printf(%x",u); /* writes u in base 16 */

Reading and writing short integers, put the letter h in front of d, o, u,
or x:

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 14 / 1



Integer Types V

short s;

scanf("%hd", &s);

printf("%hd",s);

Reading and writing long integers, put the letter l in front of d, o, u,
or x:

long l;

scanf("%ld", &l);

printf("%ld",l);

Reading and writing long long integers, put the letters ll in front of d,
o, u, or x.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 15 / 1



Floating Types I

C provides three floating types:

float,
double,
long double.

Use float when the precision is not very important, double in normal
numerical calculations. Long double is rarely used.

Floating constants can be written in various ways. For example the
number 57.0 can be written

57.0 57. 57.0e0 57E0 5.7e1 5.7e+1 .57e2 570.e-1

By default, floating constants are stored as double-precision numbers.

Reading a double constant:

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 16 / 1



Floating Types II

double d;

scanf("%lf", &d);

Use l only in a scanf format string, not a printf string. In print, e, f,
and g can be used to write float and double values. (C99 legalises the
use of le, lf, lg, although l has no effect.)

Reading and writing long double:

long double ld;

scanf("%Lf", &ld);

printf("%Lf, ld);

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 17 / 1



Character Types I

The character type is char.

C treats characters as small integers. Thus characters can be added
and increased. They can be compared just as numbers can:

if (’a’ <= ch && ch <= ’z’)

ch = ch - ’a’ +’A’;

We can easily write a for statement whose control variable steps
through all the upper-case letters:

for (ch = ’A’; ch <= ’Z’; ch++) ...

Characters may be either signed or unsigned! The C standard does
not specify whether char is signed or unsigned, but it allows the
definitions:

signed char sch;

unsigned char uch;

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 18 / 1



Character Types II

Signed character typically have values between -128 and 127, while
unsigned characters have values between 0 and 255. Java
programmers should note that C characters are 8-bit datatypes while
Java characters are 16-bit, meaning that many special symbols that
work in Java won’t work in C.

To convert a lower-case letter to upper-case: ch = toupper(ch);

To convert a upper-case letter to lower-case: ch = tolower(ch);

Reading and writing characters using scanf and printf:

char ch;

scanf("%ch", &ch);

printf("%c", ch);

Scanf does not skip white characters before reading a character. To
force scanf to do so, put a space in its format string just before %c:

scanf(" %c", &ch);

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 19 / 1



Character Types III

Since scanf does not skip white space, it is easy to to detect the end
of an input line:

do {

scanf("%c", &ch);

} while (ch != ’\n’);

When scanf is called the next time, it will read the first character on
the next input line.

Writing a single character using putchar:

putchar(ch);

Reading a single character using getchar:

ch = getchar();

getchar and putchar are faster than scanf and printf, because the
latter are much more complicated.

getchar and putchar make it popssible to write short code. Compare:

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 20 / 1



Character Types IV

do {

scanf("%c", &ch);

} while (ch != ’\n’);

while ((ch = getchar();) != ’\n’);

while ((getchar();) != ’\n’);

All these skip the rest of the input line.

To skip an indefinte number of blank characters:

while ((ch = getchar()) == ’ ’);

When the loop terminates, ch will contain the first nonblank
character that getchar encountered.

Be careful if you ix scanf and getchar in the same program. For
example

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 21 / 1



Character Types V

printf("Enter an integer: ");

scanf("%d", &i);

printf("Enter a command: ");

command = getchar();

Scanf will leave behind any character that were not consumed during
the reading of i, including the new-line character. getchar will fetch
the first leftover character, which wasn’t what we expected.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 22 / 1



Example Program: The length of a message I

#include <stdio.h>

int main(void)

{

char ch;

int len = 0;

printf("Enter a message: ");

ch = getchar();

while (ch != ’\n’) {

len++;

ch = getchar();

}

printf("Your message was %d charcaters long. \n", len);

return 0;

}

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 23 / 1



Example Program: The length of a message II

Or shorter:

#include <stdio.h>

int main(void)

{

char ch;

int len = 0;

printf("Enter a message: ");

while (getchar() != ’\n’) {

len++;

}

printf("Your message was %d charcaters long. \n", len);

return 0;

}

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 24 / 1



Practical considerations I

The recommended environment to make C programs is Unix or Linux.
These environments have the largest selection of tools for C
programming.

It is easy to make programming errors that are difficult to correct.
Some guidelines how to clear these:

You should make clear to yourself how the program should behave:
what kind of outputs it should produce, what kind of data structures to
create etc.
If the program produces wrong results, you can print some key
variables and data structures in the various phases of the run. If you
understand the task, these show usually where the error is.
There are some type of errors which are more difficult to correct. For
example, C allows sometimes to refer to memory locations which are
not reserved. This can cause strange phenomena: sometimes the
program seems to work correctly, sometimes not.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 25 / 1



Practical considerations II

To check that the program uses memory safely, you can use the
valgrind tool. We show its working in the following weeks.

If you do not like to print variables, there are debugging tools which
show the values of the variables step by step. For example, Netbeans
has this kind of a debugging tool.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 26 / 1



Arithmetical Type Conversion I

C allows the basic types to be mixed in expressions. The compiler
handles type conversions automatically, without the programmer’s
involvement. We speak of implicit conversions.

The rules for performing implicit conversions are somewhat complex.
Conversions are performed in the following situations:

When the operands in an arithmetic or logical expression don’t have
the same type.
When the type of the expression on the right side of an assignment
doesn’t match the type of the variable on the left side.
When the type of an argument in a function call doesn’t match the
type of the corresponding parameter.
When the type of the expression in a return statement doesn’t match
the function’s return type.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 27 / 1



Arithmetical Type Conversion II

The strategy behind the usual arithmetic conversions is to convert
operands to the ”narrowest” type that will safely accommodate both
values. Thus the rules for floating types are:

If large operand has type long double, the convert the other operand
to the same type. If large is double, convert the other to the same
type. If larger has the type float, convert the narrower to float.

You can represent these rule with a diagram

float --> double --> long double

The rules for integer types are

int --> unsigned int --> long int --> unsigned long int

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 28 / 1



Arithmetical Type Conversion III

When a signed operand is combined with an unsigned operand, the
signed operand is converted to an unsigned value. The conversion
involves adding or subtracting a multiple of n + 1, where n is the
largest representable value of the unsigned type. This rule can cause
programming errors.

Suppose that the int variable i has the value -10 and the unsigned int
variable u has the value of 10. If we compare i and u using the ¡
operator, we might expect to get the result 1 (true).

Before the comparison, however, i is converted to unsigned int. Since
a negative number cannot be represented as an unsigned integer, the
converted value won’t be -10. Instead, the value 4294967296 is
added, giving a converted value of 4294967286. The comparison
i < u will therefore produve 0.

Because of traps like this one, it is best to use unsigned integers as
little as possible, and never mix them with signed integers.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 29 / 1



Type Conversions in Assignments I

The usual arithmetic rules don’t apply to assignments. Instead, C follows
the simple rule that the expression on the right side of the assignment is
converted to the type of the variable on the left side.

char c;

int i;

float f;

double d;

i = c; /* c is converted to int */

f = i; /* i is converted to float */

d = f; /* d is converted to double */

Other cases are problematic.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 30 / 1



Type Conversions in Assignments II

int i;

i = 842.97; /* i is now 842 */

i = -842.97; /* i is now 842 */

Some assignments may be meaningless:

c = 10000;

i = 1.0e20;

f = 1.0e100;

A narrowing assignment may elicit a warning from the compiler.

Implicit conversions in C99 are somewhat different from the rules in C89,
because C99 has additional types
-Bool, long long types, extended integer, complex types.

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 31 / 1



Casting I

We can use explicit type conversions. For example

float f, fract_part;

frac_part = f - (int) f;

Casts are sometimes necessary to avoid overflows:

long i;

int j = 1000;

i = j * j; /*overflow may occur when storing j * j */

/*temporarily in memory */

/* do it in the following way */

i = (long) j * j;

T. Karvi C Programming, Chapter 1: C vs. Java, Types, Reading and WritingAugust 2013 32 / 1


