
Pointers and Memory Management

Timo Karvi

2013

Timo Karvi () Pointers and Memory Management 2013 1 / 58

Memory and C I

In most modern computers, main memory is divided into bytes, with
each byte capable of storing eight bits of information.

Each byte has a unique address to distinguish it from other bytes in
memory.

Each variable occupies one or more bytes of memory. The address of
the first byte is said to be the address of the variable.

Below is the table showing the typical sizes of some basic data types:

char exactly one byte

short ≥ 2 bytes

int ≥ typically 4 bytes

long ≥ 8 bytes on 64-bit environments

long long ≥ 8 bytes

Timo Karvi () Pointers and Memory Management 2013 2 / 58

Memory and C II

In the following examples we shall assume that int is 4 bytes.
However, C code should not assume that a type is of certain size.
C99 only quarantees minimum sizes for arithmetic types, and that
char is always a single byte.

If you need exact bit widths, the header file stdint.h typically contains
definitions for types int8_t, int16_t, int32_t, int64_t.

Although addresses are represented by numbers, their range of values may
differ from that of integers, so we can’t always store them in ordinary
integer variables. We can, however, store the byte addresses in special
pointer variables.

When we store the address of a variable i in the pointer variable p, we say
that p point to i. In other word, a pointer is nothing more than a byte
address.

Timo Karvi () Pointers and Memory Management 2013 3 / 58

Example 1 I

Consider the definitions:

int x = 5;

int* p = &x;

First, the integer variable x is defined and x is given the value 5.

Second, a pointer variable is introduced. p points to the integer type
data. Here p gets the initial value &x, that is the address of the
variable x (i.e. the address of the first byte of x).

Now we can use the value 5 either through x or p. For example,

int a, b;

a = x+1; /* a = 6 */

b = *p+2; /* b = 7 */

Timo Karvi () Pointers and Memory Management 2013 4 / 58

Example 1 II

The evaluation of the expression *p starts by going to the memory
location stored in variable p. Next, the four bytes starting from that
location are read as an int, because p is a pointer to an integer. In
other words, the type of a pointer affects both how many bytes are
read from memory and how those bits are interpreted.

Timo Karvi () Pointers and Memory Management 2013 5 / 58

Example 2 I

Consider the following variable declarations:

int x = 5;

char ch = x;

On the second line, the compiled code will evaluate x and store the
value 5 into ch. There is nothing surprising here, as the char type can
represent the value 5. Consider now the following:

char* cp = (char*)&x;

Here, we take the address of the int variable x and convert the type of
the address to an address of type char. All pointers are essentially
unsigned integers and they all have the same size, so the address of x
can be correctly stored in the variable cp. Now what happens, if we
dereference cp?

Timo Karvi () Pointers and Memory Management 2013 6 / 58

Example 2 II

The evaluation of *cp behaves according to the type of cp. The code
looks at the data starting from the memory location stored in cp and
interprets the single byte at that location as a char value.

In other words, *cp evaluates the first byte of the int value x in
memory. In little-endian systems, the first byte of x contains the least
significant bits of x, so *cp will evaluate to 5 in that case. In
big-endian systems, the first byte of x contains the most significant
bits, which are all zero, so *cp will evaluate to 0.

Timo Karvi () Pointers and Memory Management 2013 7 / 58

Example 3 I

In principle, the following code is still legal, although it suggests that we
are about to do something dangerous.

char ch = 42;

int* ip = (int*)&ch;

If we try to evaluate *ip, the code will attempt to follow the same
procedure as previously explained. It will look at the memory location
stored in ip and read four bytes starting from that address, although
we have stored a single byte to the address of ch. Especially, we have
allocated only one byte for ch.

Code evaluating *ip does not care that the three bytes after ch are
reserved for the program.

As a result, evaluating *ip may result in crash or it may succeed and
we may get an unexpected value, or even 42. This is an example of
undefined behaviour in C.

Timo Karvi () Pointers and Memory Management 2013 8 / 58

Arrays and pointer arithmetics I

Arrays are defined in C in the following way:

int arr1[10];
int arr2[5] = 1, 2, 3, 4, 5;
int arr3[20] = 1, 2, 3, 4;
int arr4[] = 1, 2, 3, 4, 5, 6;

arr1 is of size 10 and of integer type. The indexing starts at zero. So
the array has values in arr1[0], ...,arr1[9]. It is possible to initialize an
array as is done with arr2. It is not necessary to initialize it
completely as with arr3; the rest of the array will be zero (arr3[4] = 0,
..., arr3[19] = 0). If initialized, it is not necessary to give the size of
an array as with arr4.

If an array is not initialized as with arr1, then the contents of the
array are whatever data previously existed in the memory allocation
reserved for the array.

Timo Karvi () Pointers and Memory Management 2013 9 / 58

Arrays and pointer arithmetics II

The name arr1 is a synonym for the address of the first element in
arr1, so the following is always true:

arr1 ≡ &arr1[0]

arr1 is the address of the first byte in the block of at least 40 bytes
(int size is 4). The type of arr1[0] is int, and therefore the type of
&arr1[0] is int*. As a result, we can do following:

int* ap = arr1;

In other words, we can set the pointer to point to the first element of
the array. Also note that the type of ap does not indicate in any way
that there is more than one int value stored at the memory area
starting at ap.

So what happens when we do the following:

arr1[5] = 20;

Timo Karvi () Pointers and Memory Management 2013 10 / 58

Arrays and pointer arithmetics III

The code determines the correct destination in memory for number
20 by starting at the base address of the array arr1. From that
address, it moves forward 5 times the size of int and stores the
number 23 there.

C does not check bounds for arrays, so it is possible to compile the
following (maybe recent versions of gcc may give a warning in this
simple case):

arr1[10] = 99;

The compiled code is not concerned with the fact that the index 10 is
not a valid index of arr1. It will still move forward a space of 10
times the size of int and attempt to store 99 in that memory location
outside the array. Thus it may overwrite other important parts of
program memory.

Timo Karvi () Pointers and Memory Management 2013 11 / 58

Arrays and pointer arithmetics IV

The memory location arr1[k] can be expressed in the form arr + k ,
i.e. the following is always true:

arr1 + k ≡ &arr1[k]

When one of the operands of an addition has a pointer or array type
and the other is integer, the integer operand is scaled based on the
type of the pointer or array. Thus the memory location arr1 + k is
not k bytes from the base address of arr1, but k × sizeof(int) bytes,
as arr1 is an array of integers.

Based on the correspondence between arr1 + k and &arr1[k], the
following are also true:

∗(arr + k) ≡ arr [k],

∗arr ≡ arr [0]

Timo Karvi () Pointers and Memory Management 2013 12 / 58

Arrays and pointer arithmetics V

An interesting consequence of this property is that, due addition
being commutative, it is possible to write both arr[k] and k[arr].
The latter is not recommended.

Timo Karvi () Pointers and Memory Management 2013 13 / 58

Example 4 I

short arr[5] = {0, 11, 22, 33, 44};

char* cp = (short*)arr;

cp[4] = 1;

In this example, the contents of the short array are modified through
the char pointer cp. The memory location of cp[4] is calculated
based on the type information of cp. Therefore, the code will step
4× sizeof(char) or 4 bytes from cp.

This address is also 2× sizeof(short) bytes from the base address of
arr, i.e. the address of arr[2]. Therefore, the assigment cp[4] = 1

replaces the first byte of the short value 22 stored in arr[2] with the
char representation of 1.

Furthermore, an assignment cp[5] = 42 would replace the second
byte of arr[2] with the char representation of 42.

Timo Karvi () Pointers and Memory Management 2013 14 / 58

Example 5 I

Consider the following type definition and array:

typedef struct

{

int num;

int den;

} Fraction;

Fraction fa[3];

We assume that Fraction is stored in memory as two consecutive
integers (int). However, a C implementation may insert padding bytes
between struct members and after the last member (but never before
the first element). Thus sizeof(Fraction) may be greater than
2× sizeof(int). However, the address of a struct is always the same
as the address of its first member.

Timo Karvi () Pointers and Memory Management 2013 15 / 58

Example 5 II

We can modify the contents of fractions in arrays in the familiar way.
Here, we store the fraction 1/2 in the first elemntof the array:

fa[0].num = 1;

fa[0].den = 2;

What happens if we do the following:

Fraction* fa2 = (Fraction*)&fa[0].den;

fa2[0].num = 5;

fa2[0].den = 6;

Timo Karvi () Pointers and Memory Management 2013 16 / 58

Example 5 III

As a result of the pointer cast in the first row, the address of the
den-field of the first fraction in the array is treated like an address of
Fraction. Therefore, the address of fa2[0].num is the same as the
address of fa[0].den. The fraction in fa[0] will be 1/5, and the
fraction in fa[1] will have 6 as the numerator (denominator is
uninitialized).

Timo Karvi () Pointers and Memory Management 2013 17 / 58

Example 6: Stack I

In this example we present a simple stack implemetations for the
operations push and printStack.

#include <stdio.h>

struct stackElement {

int value;

struct stackElement* next;

};

Timo Karvi () Pointers and Memory Management 2013 18 / 58

Example 6: Stack II

void printStack(struct stackElement* S){

struct stackElement* sp = S;

while (sp != NULL){

printf("%d ", sp->value);

sp = sp->next;

}

printf("\n");

}

Timo Karvi () Pointers and Memory Management 2013 19 / 58

Example 6: Stack III

struct stackElement* push(struct stackElement* S, int n)

{

struct stackElement* newNode;

newNode =

(struct stackElement*) malloc(sizeof(struct stackElement));

newNode->value = n;

if (S == NULL) {

newNode->next = NULL;

S = newNode;

}

else {

newNode->next = S;

S = newNode;

}

return S; }

Timo Karvi () Pointers and Memory Management 2013 20 / 58

Example 6: Stack IV

int main(void)

{

struct stackElement* S;

S = push(S,1);

S = push(S,2);

S = push(S,3);

printStack(S);

return 0;

}

Timo Karvi () Pointers and Memory Management 2013 21 / 58

Example 7: Swap I

The following function swaps two int values by acceptin their memory
locations as arguments:

void swap(int* a, int* b)

{

int temp = *a;

*a = *b;

*b = temp;

}

The function can be called as follows:

int x = 5;

int y = 19;

swap(&x, &y);

Timo Karvi () Pointers and Memory Management 2013 22 / 58

Example 7: Swap II

The only part of the code specific to the int type is the amount of bytes
swapped. A generic version of the swap function accepts a third argument
that specifies the size of the elements being swapped:

void swap(void* a, void* b, size_t elem_size)

{

char* ca = a;

char* cb = b;

for (size_t i = 0; i < elem_size; i++)

{

char temp = ca[i];

ca[i] = cb[i];

cb8i] = temp;

}

return;

}

Timo Karvi () Pointers and Memory Management 2013 23 / 58

Example 7: Swap III

There are some new things here:

A value of type void* is a generic pointer, which does not have type
information associated with it. Any pointer type can be converted to
a generic pointer implicitly, so it is easy to pass pointers of any type
as arguments a and b.

As generic pointers do not have size information associated with
them, we need to tell the swap function the amount of bytes to be
swapped. The size_t type is an unsigned integer type used by the
sizeof() function and some library functions in the context of
element sizes.

In the following rows, we set up a per-byte access to the memory
areas to be swapped:

char* ca = a;

char* cb = b;

Timo Karvi () Pointers and Memory Management 2013 24 / 58

Example 7: Swap IV

Thus ca points to the first byte of the data a, and cb to the first byte
of the data b.

Dereferencing generic pointers is not allowed in C, so we need another
pointer type for accessing the data pointed to by a and b (or ca and
cb). The char* type suits well, as the char type is always one byte in
size.

After we have access to the individual bytes through what are
essentially char arrays, the rest of the code is swapping the
corresponding bytes of the two memory areas one at a time.

Example call of the generic swap function:

Timo Karvi () Pointers and Memory Management 2013 25 / 58

Example 7: Swap V

int x = 5;

int y = 32;

swap(&x, &y, sizeof(int));

double a = 3.14159;

double b = 2.71828;

swap(&a, &b, sizeof(double);

char* n1 = "Alice";

char* n2 = "Bob";

swap(&n1, &n2, sizeof(char*));

Note that the last row only swaps the contents of the pointers n1 and
n2; the contents of the strings do not move.

Timo Karvi () Pointers and Memory Management 2013 26 / 58

Example 7: Swap VI

We have lost some safety features with the generic swap function. As
any pointer type may be converted to a generic pointer, the compiler
can not check our code for mistakes related to pointer type. For
example, the compiler will accept the following calls without giving
any warnings:

short x = 12;

long y = 500;

swap(&x, &y, sizeof(short)) //parts of y are not moved

char* n1 = "Alice";

char* n2 = "Bob";

swap(&n1, &n2, sizeof(char)); // only swaps

// the first byte

swap(n1, n2, sizeof(char)); // attempts to swap

//the bytes with address n1 and n2.

Timo Karvi () Pointers and Memory Management 2013 27 / 58

Example 7: Swap VII

The last function call will most likely crash, since it is not allowed to
modify string literals.

Timo Karvi () Pointers and Memory Management 2013 28 / 58

Dynamic memory allocation I

Consider the following simple structure that stores a collection of int
values and how many values are stored:

typedef struct Elements

{

int* numbers;

int length;

} Elements;

We may not know beforehand how many numbers the user of the
structure needs. Therefore, we do not want to specify the numbers field as
a fixed-size array. Instead, we allocate the memory for the numbers at run
time by using dynamic memory allocation. Also, we may not want to
restrict the lifetime of an Elements structure to a single block of code.
Therefore, we also allocate memory for the struct itself dynamically.

Timo Karvi () Pointers and Memory Management 2013 29 / 58

Dynamic memory allocation II

The next function creates a new Elements structure and allocates memory
for as many int values as requested.

Elements* Elements_create(int length)

{

Elements* e = malloc(sizeof(Elements));

if (e == NULL)

return NULL;

e->numbers = malloc(sizeof(int) * length);

if (e->numbers == NULL)

{

free(e);

return NULL;

}

e->length = length;

return e;}

Timo Karvi () Pointers and Memory Management 2013 30 / 58

Dynamic memory allocation III

The malloc function reserves memory blocks from a structure called heap
(not related to the priority queue structure). The parameter passed to
malloc is the number of bytes required. Memory blocks allocated with
malloc stay reserved until explicitly freed with the free function. In other
words, dynamically allocated memory blocks are not constrained to code
blocks where they are created. It is important to note that malloc may fail
to allocate memory, in which case it returns NULL.

The Elements_create function calls malloc twice. If the second call fails,
it has only allocated memory for the Elements struct, but not the dynamic
int array inside. In this case, it needs to free the Elements struct so that it
can fail cleanly.

The operator -> is used to access struct members through a pointer to a
struct. In other words, a->b and (*a).b are equivalent.

Timo Karvi () Pointers and Memory Management 2013 31 / 58

Dynamic memory allocation IV

It is worth noting that Elements_create is very similar to constructors in
object-oriented languages. The most important difference is that the
memory allocation is explicit.

As dynamically allocated memory must be explicitly freed in C, we also
need a destructor to clean things up. The next function frees memory
allocated to an Elements object by the Elements_create function:

void Elements_destroy(Elements* e)

{

if (e == NULL)

return;

free(e->numbers);

free(e);

return;

}

Timo Karvi () Pointers and Memory Management 2013 32 / 58

Dynamic memory allocation V

Note that the order of the free calls is important. If we freed the memory
allocated to e before e->numbers, evaluation of e->numbers would
dereference e, which would no longer be a legal memory location. Also, it
is important to not call free more than once for a reserved memory block.

It is good programming practice to write the deallocation code right after
the allocation code, if it is practical to do so. This way, it is less likely that
we forget to write proper deallocation code.

Timo Karvi () Pointers and Memory Management 2013 33 / 58

Undefined behaviour I

According to C99, undefined behaviour is:

“behavior, upon use of a nonportable or erroneous program

construct or of erroneous data, for which this International

Standard imposes no requirements.”

A C programmer should take the “no requirements” part very literally, as
undefined behaviour need not make sense in any way. For instance, it may
result in corruption of data that is apparently unrelated to the code
executed. Therefore, it is important to avoid code that causes undefined
behaviour.

Example 1

Dereferencing a NULL pointer causes undefined behaviour. NULL is a
special pointer value that never points to a valid memory location. A
related case is passing a NULL pointer associated with a %s format to the
printf function, which also causes undefined behaviour:

Timo Karvi () Pointers and Memory Management 2013 34 / 58

Undefined behaviour II

char* str = NULL;

printf("%s\n", str);

Running the code may have the following result, which indicates that the
program attempted to access a memory location that is not reserved for
the program:

Segmentation fault

Example 2

short x = 0;

scanf("%hd", &x);

short y = (x * 2) / 2;

Timo Karvi () Pointers and Memory Management 2013 35 / 58

Undefined behaviour III

The expression x * 2 may cause an integer overflow if the user enters a
large number like 30000. Thus, the expression (x * 2) / 2 may yield a
result different from x. Nevertheless, an optimising compiler is allowed to
remove the multiplication and division by 2, as signed integer overflow
causes undefined behaviour. Therefore, the exact result of the
computation is not considered important in the case of overflow. (Note
that unsigned integer overflow is allowed and well-defined in C.)

Timo Karvi () Pointers and Memory Management 2013 36 / 58

Buffer overflows I

Example 3

The following function contains a common bug in reading user input:

void parrot(void)

{

printf("What should I say?\n");

char str[20] = "";

scanf("%s", str); // user input may cause buffer overflow!

printf("I say: %s\n", str);

return;

}

Timo Karvi () Pointers and Memory Management 2013 37 / 58

Buffer overflows II

Writing data to memory locations not allocated for the code leads to
undefined behaviour. Buffer overflow bugs are a common source of
security vulnerabilities in C programs.

Typical C implementations use a stack as storage for local variables
(including arrays) and some bookkeeping information. Specifically, one
piece of bookkeeping data is a return address which is used to find the
point of execution after a function call returns. If user input is allowed to
overwrite the return address, the user may be able to change the execution
path of the program.

The parrot function can be fixed by specifying the maximum field width in
the scanf format string:

scanf("%19s", str);

Timo Karvi () Pointers and Memory Management 2013 38 / 58

Buffer overflows III

Strings in C are essentially char arrays that end in a terminating zero byte
(written in code as ’\0’). The fixed scanf call reads at most 19
(non-whitespace) characters from the standard input and stores them,
along with the terminating ’\0’, to the memory block starting at str.
When dealing with functions that process strings (such as strlen, str(n)cpy,
snprintf and fgets), it is important to check how they handle the ’\0’
byte.

Timo Karvi () Pointers and Memory Management 2013 39 / 58

Other memory errors I

Example 4

Another common memory error is to access an object outside of its
lifetime. The following code is a simple example:

int* foo(void)

{

int x = 5;

return &x;

}

Memory for the variable x is allocated by using automatic memory
allocation. As a result, the memory reserved for x is automatically freed at
the end of the code block where x was declared, i.e. before the caller of
foo receives the address of x.

However, accidentally accessing an object outside of its lifetime is much
more common with dynamic memory allocation. Consider the Elements

Timo Karvi () Pointers and Memory Management 2013 40 / 58

Other memory errors II

structure from the previous section and what would happen if we made the
following mistake in the deallocation code:

Elements* Elements_destroy(Elements* e)

{

if (e == NULL)

return;

free(e);

free(e->numbers); // *e is no longer valid here!

return;

}

If we freed the memory allocated to e before e->numbers, evaluation of
e->numbers would dereference e, which would no longer be a legal
memory location. Also, it is important to not call free more than once for
a reserved memory block.

Timo Karvi () Pointers and Memory Management 2013 41 / 58

Sequence points I

The C99 standard grants compilers a lot of freedom in evaluation order of
expressions. In the following statement, the functions f, g and h may be
called in any order:

arr[f(x)] = g(y) * (h(z) + 1);

Consider the implications of this freedom if we have a statement like the
following:

arr[i] = i++;

What value of i is used as an index of arr? C99 does not specify that; in
fact, the behaviour of the statement is undefined.

A sequence point is a point of execution where previous side effects in the
code have finished and the following ones have not yet taken place. The
following code points (among some others) are sequence points in C:

Timo Karvi () Pointers and Memory Management 2013 42 / 58

Sequence points II

; (end of statement)

&& and || operators — these allow the following construct:
if (p != NULL && *p ...)

After the ? in the short-hand if-else operator ?:

Before/after loop condition tests and for loop index
initialisation/increment

Before a function call (after evaluation of the arguments) and after
function return

However, it is notable what points in code are not sequence points. For
instance, the expression

arr[i] = i++

does not contain any sequence points. Also, evaluation order of function
arguments is not limited by sequence points. If a memory location is
updated between adjacent sequence points, it is not permitted to read it
(or update again) between the same sequence points.

Timo Karvi () Pointers and Memory Management 2013 43 / 58

Defensive Programming I

In order to write safe C code, it is important to adopt clear and consistent
style, and prepare for mistakes while programming.

Example 5: assert

Whenever you make a non-trivial assumption about the program state in
your C code, test it with the assert macro (defined in assert.h). Good
places for assert tests include checking of function arguments:

#include <assert.h>

int Elements_get(Elements* e, int index)

{

assert(e != NULL);

assert(index >= 0);

assert(index < e->length);

// ...

Timo Karvi () Pointers and Memory Management 2013 44 / 58

Defensive Programming II

If an assertion test is false, the execution of the program terminates with
an error message describing the source file and location of the test. It is
also possible to disable the assert statements at compile time by passing
the flag -DNDEBUG to gcc. Therefore, the programmer does not need to
worry about performance loss caused by assert checks when building a
release version of the program.

Note that you should not test user input with assert. The assert macro is
designed to help with finding programming errors. Also, it is important to
avoid assert code that modifies data outside the assert check. Such code
could make the debug version of the program produce different results
from the release version.

Timo Karvi () Pointers and Memory Management 2013 45 / 58

Other techniques and habits I

Remember the gcc options -std=c99 -pedantic -Wall -Wextra -Werror that
enable the compiler detect many potential errors at compile time.

Initialise all variables with an explicit value, especially pointers. An
uninitialised variable in C contains a value represented by a bit pattern
that happens to reside in the memory location reserved for the variable.
This may be essentially random data, or worse, data injected by a
malicious user.

Whenever you call malloc, write the corresponding free call as soon as
possible. This way you consider the lifetime of the dynamically allocated
object and are less likely to forget the free call.

Read the man pages of the library functions you use. You can find
information about a standard C library function by writing
man 3 function_name in the terminal, or by going to the address:
http://linux.die.net/man/3/function_name (Ubuntu users can

Timo Karvi () Pointers and Memory Management 2013 46 / 58

Other techniques and habits II

install the package “manpages-dev” to get the man pages). Note: The
man pages typically refer to many different C standards. It is important to
check the “CONFORMING TO” section to see that the features you plan
to use are specified in the C99 standard.

Timo Karvi () Pointers and Memory Management 2013 47 / 58

When good habits are not enough I

Even with good programming habits, memory-related bugs are common in
C programming. Valgrind is a very useful tool for debugging memory use
in C programs. It can detect problems like use of uninitialised variables,
buffer overflows (with dynamically allocated memory blocks) and memory
leaks (errors where dynamically allocated memory blocks are not freed).

If you want to run your program with Valgrind, compile your C program
with the -g switch.

Example 6

The following code contains a buffer overflow on a dynamically allocated
block:

Timo Karvi () Pointers and Memory Management 2013 48 / 58

When good habits are not enough II

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

int* arr = malloc(sizeof(int) * 500);

if (arr == NULL)

{

printf("No memory :-(\n");

exit(EXIT_FAILURE);

}

// oops: the loop writes to arr[500]

for (int i = 0; i <= 500; ++i)

{

arr[i] = 10 * i;

}

Timo Karvi () Pointers and Memory Management 2013 49 / 58

When good habits are not enough III

printf("%d\n", arr[45]);

free(arr);

exit(EXIT_SUCCESS);

}

The code accidentally writes one int value beyond the end of the allocated
memory block. Although the program is likely to run “correctly”,
compiling the program with the -g switch and running with Valgrind
reveals the following issue (emphasis added):

$ valgrind --leak-check=full --show-reachable=yes

./error_overflow

==25700== Memcheck, a memory error detector

==25700== Copyright (C) 2002-2010, and GNU GPL’d,

by Julian Seward et al.

==25700== Using Valgrind-3.6.1 and LibVEX; rerun with -h f

Timo Karvi () Pointers and Memory Management 2013 50 / 58

When good habits are not enough IV

or copyright info

==25700== Command: ./error_overflow

==25700==

==25700== Invalid write of size 4

==25700== at 0x40066A: main (error_overflow.c:17)

==25700== Address 0x51c3810 is 0 bytes after a block of

size 2,000 alloc’d

==25700== at 0x4C28FAC: malloc (vg_replace_malloc.c:236)

==25700== by 0x400625: main (error_overflow.c:9)

==25700==

450

==25700==

==25700== HEAP SUMMARY:

==25700== in use at exit: 0 bytes in 0 blocks

==25700== total heap usage: 1 allocs, 1 frees,

2,000 bytes allocated

Timo Karvi () Pointers and Memory Management 2013 51 / 58

When good habits are not enough V

==25700==

==25700== All heap blocks were freed --

no leaks are possible

==25700==

==25700== For counts of detected and suppressed errors,

rerun with: -v

==25700== ERROR SUMMARY: 1 errors from 1 contexts

(suppressed: 4 from 4)

Valgrind detects the buffer overflow and reports the location in the code
where the error occurred (line 17 in error_overflow.c) and where the
related memory block was allocated (line 9). If Valgrind does not display
the source files or the line numbers, the executable was likely compiled
without the -g switch.

Even after the code is fixed, Valgrind outputs quite a bit of information
(the line with 450 is the output of our program):

Timo Karvi () Pointers and Memory Management 2013 52 / 58

When good habits are not enough VI

$ valgrind --leak-check=full --show-reachable=yes

./error_overflow

==26387== Memcheck, a memory error detector

==26387== Copyright (C) 2002-2010, and GNU GPL’d,

by Julian Seward et al.

==26387== Using Valgrind-3.6.1 and LibVEX; rerun

with -h for copyright info

==26387== Command: ./error_overflow

==26387==

450

==26387==

==26387== HEAP SUMMARY:

==26387== in use at exit: 0 bytes in 0 blocks

==26387== total heap usage: 1 allocs, 1 frees,

2,000 bytes allocated

==26387==

Timo Karvi () Pointers and Memory Management 2013 53 / 58

When good habits are not enough VII

==26387== All heap blocks were freed -- no leaks are possible

==26387==

==26387== For counts of detected and suppressed errors,

rerun with: -v

==26387== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 4 from 4)

Example 7

The following code does not free the dynamically allocated memory block:

Timo Karvi () Pointers and Memory Management 2013 54 / 58

When good habits are not enough VIII

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

int* arr = malloc(sizeof(int) * 500);

if (arr == NULL)

{

printf("No memory :-(\n");

exit(EXIT_FAILURE);

}

for (int i = 0; i < 500; ++i)

{

arr[i] = 10 * i;

}

printf("%d\n", arr[45]);

Timo Karvi () Pointers and Memory Management 2013 55 / 58

When good habits are not enough IX

// we forget to free arr

exit(EXIT_SUCCESS);

}

Valgrind outputs the following diagnostic (note the command line
arguments –leak-check=full –show-reachable=yes passed to Valgrind):

$ valgrind --leak-check=full --show-reachable=yes

./error_mem_leak

==26299== Memcheck, a memory error detector

==26299== Copyright (C) 2002-2010, and GNU GPL’d,

by Julian Seward et al.

==26299== Using Valgrind-3.6.1 and LibVEX; rerun

with -h for copyright info

==26299== Command: ./error_mem_leak

==26299==

Timo Karvi () Pointers and Memory Management 2013 56 / 58

When good habits are not enough X

450

==26299==

==26299== HEAP SUMMARY:

==26299== in use at exit: 2,000 bytes in 1 blocks

==26299== total heap usage: 1 allocs, 0 frees,

2,000 bytes allocated

==26299==

==26299== 2,000 bytes in 1 blocks are still reachable

in loss record 1 of 1

==26299== at 0x4C28FAC: malloc (vg_replace_malloc.c:236)

==26299== by 0x4005E5: main (error_mem_leak.c:9)

==26299==

==26299== LEAK SUMMARY:

==26299== definitely lost: 0 bytes in 0 blocks

==26299== indirectly lost: 0 bytes in 0 blocks

==26299== possibly lost: 0 bytes in 0 blocks

Timo Karvi () Pointers and Memory Management 2013 57 / 58

When good habits are not enough XI

==26299== still reachable: 2,000 bytes in 1 blocks

==26299== suppressed: 0 bytes in 0 blocks

==26299==

==26299== For counts of detected and suppressed errors,

rerun with: -v

==26299== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 4 from 4)

Valgrind tells where the leaked memory block was allocated (line 9 in
error_mem_leak.c).

Timo Karvi () Pointers and Memory Management 2013 58 / 58

