Some Details of C and C Environment

Timo Karvi

October, 2013
In this last lecture, we look at

- Bit orders and storage alignment,
- Advanced aspects of C operators, and
- Some aspects of numerical calculations.
Suppose we have the definition

```c
unsigned int n = 257;
```

Normally \(n \) takes 4 bytes. In this case, two bytes contain the number 1 and the other two only zero bits. Is the situation in these Linux machines

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(little endian)

or

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(big endian)?

We can test this by defining
unsigned int n = 257;
uint8_t* u_ptr;

u_ptr = &n;

printf("Mem addr of n: \%lu\n", u_ptr);
printf("First byte: \%d \", *u_ptr);
printf("Second byte: \%d \n \", *(u_ptr+1));

If 1 and 1 are printed, the system is little endian. If the system is big endian, maybe zeros are printed or the system crashes (segmentation fault).
Bit order in a byte

Assume the definitions

```c
uint8_t byte = 1;
```

Is the byte now

```
1000 0000
```

or

```
0000 0001
```

We can examine this with shift operations. If the first were the case, then

```
byte >> 1;
```

would produce the value 2. If the latter, then

```
byte << 1;
```

would produce 2. It turns out that the second alternative happens in Linux machines.
Consider the following structure definition:

```c
typedef struct {
    short Data1;
    short Data2;
    short Data3;
    short Data4;
} Data;
```

Then `sizeof(Data) = 8`. Let’s consider another structure

```c
typedef struct {
    char Data1;
    short Data2;
    int Data3;
    char Data4;
} MixedData;
```
The size of MixedData is 8, but the actual size is 10. So padding bytes are added by the compiler.

In Linux systems, malloc reserves memory blocks so that the number of the first byte is divisible by four. However, it seems possible to store an integer so that it starts from a byte not divisible by four. This kind of integer position may, however, slow down an execution.
Operators

We deal with the following:

- Assignment combinations.
- Lazy evaluation.
- Evaluation order and side-effect operators.
- Conditional operator.
Operators: Assignment

All the assignment-combination operators have the same very low precedence and associate from right to left. Consider for example the expression

```
t /= n -= m *= k += 7;
```

The evaluation starts with $k = k + 7$ and continues from right to left. So $+$ is made before $*$ even if in normal expressions the precedence of multiplication is higher than the precedence of addition.
With lazy evaluation, when we skip, we skip the right operand.

This is not confusing, when the right operand is only a simple variable. However, sometimes it is an expression with several operators.

Consider an example:

\[y = a < 10 \text{ || } a \geq 2 \times b \text{ && } b \neq 1; \]

The left operand is \(a < 10 \) and the right operand is \(a \geq 2 \times b \text{ && } b \neq 1 \).

If \(a = 7 \), we skip all after \(\text{||} \) and \(y \) get the value 1. If \(a = 17 \) and \(b = 20 \) the expression after \(\text{&&} \) is not evaluated and \(y \) becomes 0.

A usual assumption is that \(\text{&&} \) is executed first, because it has higher precedence. Although precedence controls the construction of the parse tree, precedence simply is not considered when the tree is evaluated.
Sometimes lazy evaluation can substantially improve the efficiency of a program. A much more important use of skipping is to avoid evaluating parts of an expression that would cause machine crashes or other kinds of troubles.

Assume that we want to divide a number x, compare the answer to a minimum value, and do an error procedure if the answer is less than the minimum. But it is possible for x to be 0 and that must be checked. We can avoid a division-by-0 error and do the computation and comparison in one expression by using a *guard* before the division:

```c
if (x != 0) && total / x < minimum) do_error();
```

The skipping may happen in the middle of an expression. Consider

```c
y = a < 0 || a > b && b > c || b > 10;
```

for $a = 3$ and $b = 17$. The subexpression $b > c$ is not evaluated, all the other are and y becomes 1.
When used in isolation, the increment and decrement operators are convenient and relatively free of complication. When side-effect operators are used in long, complex expressions, they create the kind of complexity that fosters errors. If such an operator is used in the middle of a logical expression, it may be executed sometimes but skipped at other times.

A second problem with side-effect operators relates to the order in which the parts of an expression are evaluated. Recall that the evaluation order has nothing to do with precedence order. We have stated that logical operators are executed left to right. This is also true of two other kinds of sequencing operators: the conditional operator ?...: and the comma (for example, for (i = 1, j = 1; ...)). Most other operators can be evaluated right-side first or left-side first.
This leads to one important warning: If an expression contains a side-effect operator that changes the value of a variable V, *do not use* V anywhere else in the expression. The side-effect could happen either before or after the value of V is used elsewhere in the expression and the outcome is unpredictable.
Even if the evaluation in an expression with the conditional operator starts by calculating true or false value, the value of the entire conditional operator, in general, will not be true or false.

If the condition contains any postincrement operators, the increments must be done before evaluating the true clause or the false clause. Therefore, it is "safe" to use postincrement in the condition.
Numerical Calculations

- Choosing the proper data type.
- Representational properties.
- Computational issues.
- Casts and mixed-type operations.
- Sticky points and common errors.
- Representation error.
Integer or real? For most problems obvious.

Float vs. double. Because a programmer can combine types float and double freely in expressions, most of the time, it does not matter which real type is used. Sometimes the degree of precision required for the data dictates the use of double. Since all the functions in the math library expect double arguments and return double results, most programmers just find it easier to declare all real variables as double.

However, if you are processing large amount of data and precision is not important, then float variables use only half as much space as doubles and an int even less in some cases. Integer calculations are faster than real calculations and float values are faster than double values.
For integers: signed, unsigned, short and long.

- Max short signed: 32767
- Max long signed: 2 147 483 647
- Max long unsigned: 4 294 967 295

For float the minimum value range is

\[1.175 \times 10^{-38} \ldots 3.402 \times 10^{38} \]

For double:

\[2.225 \times 10^{-308} \ldots 1.797 \times 10^{308} \]
Integer division is not the same as division using real numbers; any remainder from an integer division is forgotten. The remainder must be computed by using a modulus operator(\%).

Sometimes the underlying computer hardware does not support floating-point arithmetic, in which case floating point representation and computation must be emulated by software. This is slow.
C supports mixed-type arithmetic. When two values of differing types are used with an operator, the value with less precision automatically is coerced to the more precise representation.

If an integer is combined with float or a double in an expression, the integer operand always is converted to the type of the floating-point operand before the operation is performed. The result is a floating-point value.

A type conversion may be safe, in that it will cause no loss of information, or it may be unsafe. Knowing when a type conversion can be used safely is important. However, sometimes an unsafe conversion is exactly what the programmer needs.

An explicit type cast must be used to perform real division with integer operands.
Using the wrong conversion specifier in a format can cause input or output to appear as garbage. Default length, short, and long integers have different conversion codes, as do signed and unsigned integers.

When using reals, there is no way to tell from the printed output whether a value came from a double or a float variable. If you specify a format such as %.10f, you might see 10 nonzero digits printed, but that does not mean that all are accurate. If the number came from float variable, the eighth through tenth digits usually will be garbage.

Some systems use 2 bytes to represent int, others use 4 bytes. This makes the portability of code a nightmare. Errors due to integer sizes are among the hardest to find because of the ever-present automatic size conversions all C translators perform.
Types float and double are *approximate representations* for real numbers, but with differing precision. Consider the code below:

```c
float w = 4.4; double x = 4.4;

printf(" Is x == (double) w? %i \n", (x == (double)w) );
printf(" Is (float)x == w? %i \n", ((float)x == w) );
```

The output may be unexpected, if you forgot that the two numbers are represented with limited, and different, precision and that the `==` operator tests for exact bit-by-bit equality:

```
Is x == (double)w? 0
Is (float)x == w? 1
```
When a more-precise value is cast to the less-precise type, the extra bits are truncated and the numbers are exactly equal. When a shorter value is cast to the longer type, it is lengthened by adding zero bits at the end of the mantissa, not by recomputing the additional bit values. In general, these zeros are not equal to the meaningful bits in the double value.

Computation also can introduce representational error, as shown by the next code fragment:

```c
float w;
    double x, y = 11.0, z = 9.0;

    x = z * (y / z);
    w = y-x;
```
The result is as expected, \(w = 0, \ x = 11.000 \). But change the starting values \(y = 15.0 \) and \(z = 11.0 \), and the result is

\[
 w = 1.77635e - 15, \quad x = 15.000.
\]

Why does this happen? The answer to a floating-point division has a fractional part that is represented with as much precision as the hardware will allow. However, the precision is not infinite and there is a tiny amount of truncation error after most calculations. Therefore, the answer to \(y/z \) may have error in it, and that error is increased when we multiply by \(z \).
When are two floating-point numbers equal? The answer is that they should be called equal if both are approximations for the same real number, even if one approximation has more precision than the other.

Practical problems often require comparing a calculated value to a specific constant or setpoint or comparing two calculated values that should be equal. Such a comparison is not as simple as it seems, because even simple computations with small floating-point values can have results that differ from the mathematically correct versions.

We can get around this comparison problem by comparing the difference of the two numbers to a preset epsilon value. For any given application, we can choose a value of epsilon that is slightly smaller than the smallest measurable difference in the data.

This kind of comparison can be made with a single if command, if we use \texttt{fabs()} function from the math library:
double epsilon = 1.0e-3;
double number, target;

if (fabs(number - target) < epsilon)
 /* then we consider that number == target */
else
 /* we consider the values different; */
Integer overflow and wrap. Suppose that the 2-byte integer variable \(k \) contains the number 32300 and you enter a loop that adds 100 to \(k \) seven times. The value stored in \(k \) would be, in turn, 32400, ..., 32700, \(-32736\), ..., \(-32536\). The value has wrapped around and become negative, but that does not stop the computer. This can be a potential security hole allowing buffer overflow attacks.

Floating-point overflow and infinity. The phenomenon of wrap is unique to integers; floating-point overflow is handled differently. The IEEE floating-point standard defines a special bit pattern, called infinity, that will result if overflow occurs during a computation. The constant `HUGE_VAL`, defined in `math.h`, is set to be the infinity value on each local system. Therefore, one way an overflow can be detected is by comparing a result to `HUGE_VAL` or `-HUGE_VAL`.

Underflow. Underflow occurs, when the magnitude of the number falls below the smallest number in the representable range. This can, of course, happen only for real numbers. For real numbers, underflow happens when a value is generated that has a 0 exponent and a nonzero mantissa. Such a number is referred to as *denormalized*, which means that all significant bits have been shifted to the right and the number is less than the lowest number specified by the standard. Some systems will generate the 0 value when the lower bound has been reached. Others still use the denormalized values. Underflow can result from several kinds of computations:

- Dividing a number by a very large number or repeated division.
- Multiplying a small number by a near-zero number, which has the same effect as dividing by a very large number.
- Subtracting two values that are near the smallest representable float and ought to be equal but are not quite equal because of round-off error.
If you add a small float number to a large one, and their exponents differ by more than 10^7, the addition likely will have no effect. The answer will be the same large number that you started with.

A special value called **NAN**, which stands for "not a number", can be generated through operations such as $0/0$. This is another special bit pattern that does not correspond to a real value. The IEEE standard defines that any further operation attempted using a NaN or Infinity as an operand will return the same value.
Analyse the following pieces of code where pointers are used. Explain verbally and with the help of diagrams, what happens and if the code is working properly or not. If it is not working, explain the error and correct the code. Diagrams should show the memory locations of the variables, the contents of those locations, and to what locations pointers refer in every phase.

a)

double * p1;
double * p2;

p1 = malloc(sizeof(double));
*p1 = 3.112;
p2 = p1;
printf("%f",*p2);
b)

```c
char * s1 = "abcdefghijklm";
char * s2;

s2 = s1;
printf("%s",s2);
```

c)

```c
char * s1 = "abcdefghijklmn";
char * s2;

strcpy(s2,s1);
printf("%s",s2);
```

d) Consider the following structure:
struct person{
 char * name;
 int age;
};

The following piece of code reads n names and ages from the keyboard, creates a structure for every name and places the names and ages into the corresponding structures.

struct person * ptr;
int i;
char name[50];
int age;

ptr = malloc(n*sizeof(struct person));
/* n defined earlier */
for (i=0; i < n; i++)
{
 fgets(name,50,stdin);
 scanf("%d", &age);
 (ptr+i)->name = name;
 (ptr+i)->age = age;
}

Is the code working properly?

2. Write a function

 int read_data(char * filename, int * max_line);

that opens the file given as a parameter and calculates the number of lines in the file. Empty lines are counted, too. In addition, the function calculates the length of the longest line and returns it with the help of the other parameter. Lines may be arbitrary long.
Write a function

```c
uint16_t make_16bit(uint8_t least_significant,
                    uint8_t most_significant);
```

that combines the given bytes into one 16-bit integer and returns the result.

Example:

- `print_bin(1) => 00000000.00000000.00000000.00000111`
- `print_bin(7) => 00000000.00000000.00000000.00000111`
- `print_bin(make_16bit(7, 1)) => 00000000.00000000.00000001.00000111`

4) a) Let p be a pointer i a variable of integer type. What does $p + i$ mean?

b) Let p and q be pointers. How do you interpret $p - q$? When is the expression erroneous?
c) Let p be a pointer and a an array. Where does p refer to after $p = a$ and after $p = &a[0]$?

d) Let a be an array. What does $*(a + i)$ mean?

e) Suppose that sizeof(short) == 2 and sizeof(int) == 4. Consider an array

type arr[5] = { 0, 0, 0, 0, 0 }; Explain where the following statement stores values (both the location and the amount of bytes written).

$$\text{((short*)arr)[7] = 128;}$$

ATTACHMENT:

The definitions of some C functions:
int scanf (const char * format, ...);
int fgetc (FILE * stream);
int fscanf (FILE * stream, const char * format, ...);
char * fgets (char * str, int num, FILE * stream);
FILE * fopen (const char * filename, const char * mode);
int fclose (FILE * stream);
char * strcpy (char * destination, const char * source);
size_t strlen (const char * str);
void * malloc (size_t size);
void * calloc (size_t num, size_t size);

OBS: Give some feedback of the course, either anonymously using the www feedback system of the department or manually on a separate paper when your return yourn programming work.
Consider the following code fragments, where pointers are used. Explain with the help of words and drawings, what happens in various phases. The drawings should show the contents of the memory locations of variables and pointers after commands. Moreover, if there are print commands, what are printed?

a)

```c
int a;
int *aPtr;

a = 7;
aPtr = &a;
printf("%d\n", &a);
printf("%d\n", aPtr);
```
printf("%d\n", a);
printf("%d\n", *aPtr);
printf("%d\n", *&aPtr);
printf("%d\n", **aPtr);

b)

char * s1 = "abcdefghijklm";
char * s2;

s2 = s1;
printf("%s", s2);
c) void cubeCalculation(int *ptr)
{
 *ptr = *ptr * *ptr * *ptr;
}

In the main program:

int number = 5;
cubeCalculation(&number);
printf("%d", number);
Consider the data structure in the appendix representing an automaton:
Write a function `int unreachable(Automaton * A)` which examines, if there are from the initial state unreachable states. The function returns 0, if there are no unreachable states, otherwise 1.

Write a function

```c
int read_data(char * filename);
```

that open the file given as a parameter and calculates the number of lines in the file. Empty lines are counted, too. Lines may be arbitrary long.

Explain how function parameters are used. Give a simple example.
1. Tulkitaan tavu polynomiksi, kun kertoimet ovat modulo 2 lukujä (siis 0 tai 1). Oletetaan, että vähiten merkitsevä bitti on tavussa oikealla. Siiten esimerkiksi 01100111 tarkoittaa polynomea $x^6 + x^5 + x^2 + x + 1$. Kahden tällaisen polynomin summa on yksinkertaistesti tavujen xor-operaatio. Tavun muodostaman polynomin kertominen x:llä modulo $f(x) = x^8 + x^4 + x^3 + x + 1$ tapahtuu siten, että ensin shift-operaatiolla siirretään tavua yksi askel vasemmalle. Jos tavun vasemmanpuoleisin bitti oli ykkösbitti, se vuotaa siirrossa tavasta ulos. Tällöin on vielä tehtävä tavun xor-operaatio tavun 00011011 kanssa. Muutoin pelkä shift riittää.

Esimerkki. Tarkastellaan tavua 01100111. Se edustaa polynomea $x^6 + x^5 + x^2 + x + 1$. Kun tämä kerrotaan x^2:lla, jaetaan tehtävä kahteen osaan. Kerrotaan ensin x:lla. Siis tehdään sivuttaissiirto, jolloin saadaan 11001110. Kerrotaan tämä vielä x:lla. Tehdään sivuttaissiirto ja saadaan 10011100. Nyt yksi ykkönen on vuotanut yli,
joten tarvitaan vielä xor-operaatio tavun 00011011 kanssa. Saadaan lopputulos 1000111. Tämä edustaa polynomia \(x^7 + x^2 + x + 1 \), joka on tulon \(x^2 \times (x^6 + x^5 + x^2 + x + 1) \) lopputulos modulo \(f(x) \).

Laadi funktio \(\text{uint8_t mul1(uint8_t byte, int n)} \), joka kertoo (modulo \(f(x) \)) tavun byte muodostaman polynomin polynomilla \(x^n \), \(0 < n < 8 \).
(xor-operaatio on \(^\) ja shift-operaatio \(<<<\).)

Tarkastellaan yksisuuntaisia linkitettyjä listoja, joissa solmun tietona on kokonaisluku. Kirjoita tällaisen listan tyyppimäärittelyt. Oletetaan, että listat on järjestetty suuruusjärjestykseen pienimmästä suurempaan. Kirjoita funktio

\[
\text{slist* merge(slist* L1, slist* L2),}
\]

joka lomittaa kaksi suuruusjärjestyksessä olevaa listaan kolmanneksi listaksi, joka on myös suuruusjärjestyksessä. (Edellä on oletettu, että solmun ja siis myös listan tyyppi on slist.)

\[2\]
Esittele, miten funktio voidaan antaa parametrina toiselle funktiolle. Anna myös esimerkki.