
C Programming, Autumn 2013, Exercises for the Third Week

1. Fill in the function

int append_string(char *file_name)

which reads a user input (character string) from the keyboard and appends
the string to a text file with name file_name. If everything goes well return
0. If opening the file is unsucessful, return 1. Make your function so that if a
non-existent file is given, this file will be created. You are allowed to assume
that user input is maximum 50 characters long.

2. Fill in the function remove_empty_lines that removes all empty lines (i.e. lines
containing only the-end-of-line character) from a text file. (Hint: It is easiest
just to copy the text file to another text file leaving the empty lines away). You
can assume that each row in the file contains at maximum 50 characters. The
function returns 0 if everything succeeds. If the given file does not exist, 1 is
returned. Notice the Windows environment, too, i.e. \r\n.) Note that this
must work with windows and unix linebreaks!

3. Fill in the function count_characters_in_file. This function receives a file
name, and counts the number of characters in it, taking into account all line
breaks and related characters.

4. The next tasks form a larger program which deals with the data structure Skip
list. A skip list is a probabilistic data structure that uses multiple sparse linked
lists to offer faster access to data. The lists are numbered from one to n, with
one being the full list of elements in a skip list and each successive list being
sparser (skipping some nodes) to make searches faster. Whenever an element
is added to the skip list, it is always added to the first list and then possibly
to the second, third... list with decreasing probability for inclusion in each list,
resulting in sparser lists.

Each of the lists in the skip list is always ordered. When an element is searched
for in the skip list, the search begins at the “topmost”, or most sparse, list and
proceeds to a less sparse list as soon as it has determined that the specified
value cannot be found on the sparser ones. If the value cannot be found in the
“bottommost”, or the least sparse list, it is not contained in the skip list at all.

See Wikipedia and other online sources for more information on Skip lists
(http://en.wikipedia.org/wiki/Skip list)

In these exercises we will make a simple version of skip list that doesn’t need
to change its max level in inserts and deletes.

Use the following structs for your skip lists:

1



typedef struct skiplist_node {

int value;

int levels;

struct skiplistNode **next_pointers;

struct skiplistNode **prev_pointers;

} SkipListNode;

value is the value of the node, used in sorting. levels is the level of the node,
with 1 meaning it belongs only to the bottommost (least sparse) list and, for
example, 3 meaning it belongs to two additional, less sparse lists.

next pointers and prev pointers are pointers to an array of pointers. next pointers[i]
points to the node’s successor on the i + 1th level of the list, and similarly
prev pointers[i] points to the node’s predecessor on the i+1th level, again first
level being the least sparse list. The maximum value of i is determined by the
max level field in the Skiplist struct:

typedef struct {

int max_level;

SkipListNode *header;

} SkipList;

Fill in the function

skiplist* create_skip_list(int max_height)

that initializes a skip list with the specified maximum height. To make things
easier, let’s put a header node in the list. This header node is a normal node,
with a value of INT MAX. It eases the use of pointers. With this additions
we can then assume that only values smaller than INT MAX are added to
the list. Remember to allocate memory for the next and prev pointers of the
header node and initialize their values. Also note, that these fields are most
conveniently used as arrays of pointers.

5. Fill in the function

SkipListNode* find(skiplist* list, int value)

that returns a pointer to the node containing value if a node with the searched
value is found in the skip list, otherwise NULL. Finding should be done in
logarithmic time starting from the topmost most sparse list. If the value isn’t
found in that list and we reach the end of the list, or a value that is larger than
the searched value, we progress down to the list below from the current node
in the search. We again scroll forward in this list until we find the value, or
reach a larger value or NULL pointer, and progress down to the list below. If
the whole list in the bottom most layer doesn’t contain the value either, it is
not in the list.

2



6. Fill in the function

int decide_level(int max_level)

that returns an integer n so 1 ≤ n ≤ max level. This function will be used
to decide how high a new node in the skip list is promoted. A node is always
added to level 1, and is promoted to level 2 with 1/2 probability. If the node is
promoted, it has a further 1/2 chance of being promoted to level 3 and so on
until either the node isn’t promoted or it reaches max level. This function is
found in a separate source file. Don’t worry about that, it’s only a necessary
evil for one of our neat compiler tricks we use for testing. ;)

7. Fill in the function

int insert_to_skip_list(skiplist* list, int value)

that inserts a new value in the skip list. This should result in the node being on
levels 1..n where n is obtained by calling decide level with the proper max level
of the skip list as the argument. Remember to keep all levels of skip list in
order. This operation should ne done in the same way as searching to keep
the operation in logarithmic time, assuming that max level is appropriately
set. This can again be achieved by going node by node in the topmost list to
find the correct insertion place, then progress down to the list below and again
progress in the list to the right place etc. This way you don’t have to search
from the beginning of each of the lists.

8. Create the function

int delete_from_skip_list(skiplist* list, int a)

that deletes the node with the value a in the skip list (you can assume there
will be no duplicates). Hint: previous functions might be useful.

9. Create the function

SkipList* reconstruct(skiplist* list, int new_level)

that creates a new SkipList with the same elements as list and the maximum
level specified by new level. Hint: previous functions might be useful.

3


