
C Programming, Autumn 2013, Exercises for the Fourth Week

1. Consider a two-dimensional 4×4 array whose elements are of the type uint8_t.
We can use the following definition

typedef uint8_t state [4][4];

Write a function

state* read_block(FILE* fptr)

which reads a plain text block of 128 bits or 16 bytes from a text file and stores
it into an array whose type is state. The first byte should go into state[0][0], the
next into state[0][1], etc. The function returns a pointer to that array. Hint:
use fread.

2. Write two functions

void shift_row(state* arr);

void inv_shift_row(state* arr);

The first function takes a pointer to an array of state type and transforms the
array in the following way. The first row of the array is not altered. For the
second row, a 1-byte circular left shift is performed. For the third row, a 2-byte
circular left shift is performed. For the fourth row, a 3-byte circular left shift
is performed. The following example shows what happens:

87 F2 4D 97
EC 6E 4C 90
4A C3 46 E7
8C D8 95 A6

−→

87 F2 4D 97
6E 4C 90 EC
46 E7 4A C3
A6 8C D8 95

The second function performs the circular shifts in the opposite direction for
each of the last three rows.

3. Let us define

typedef struct {

uint8_t i;

uint8_t j;

} intPair;

Write a function

intPair construct_indices(uint8_t byte);

1

that returns two integers as follows. The four leftmost bits of byte form the
integer i and the four rightmost bits of byte form the integer j. The function
returns i and j in the structure of type intPair.

4. S-Box is an 16× 16 array whose elements are uint8_t integers. S-Box is given
as an attachment where elements have been written in hexadecimal notation.
Make a function

Sbox* read_sbox(FILE* fptr);

that reads S-Box from a file and stores the values into a Sbox array. The
function returns a pointer to that array. The Sbox is defined as

typedef uint8_t sbox [16][16];

5. Write a function

void sub_bytes(state* st, Sbox* box);

that transforms the state array st as follows. For every element (byte) of st (for
example (*st)[m][n]), use first the function constructIndices to construct two
integers i and j from the element. These i and j serve as indices into the S-box
to select a unique 8-bit value which replaces the original value of the element.
(i.e. (*st)[m][n] = (*box)[i][j]);

6. Consider a byte b. It can be regarded as a polynomial with modulo 2 integer
coefficients (i.e. 0 or 1). Assume that the least significant bit in the byte is on
the right. (This depends on the machine architecture, but is the most common.)
Thus for example 01100111 describes the polynomial x6 + x5 + x2 + x + 1.
The sum of two this kind of polynomials is simply got by making the xor
operation between the bytes. The multiplication of a byte with x modulo
f(x) = x8 + x4 + x3 + x+ 1 is done as follows. Make first one step shift for the
byte to the left. If the leftmost bit of the byte was 1, it drops out from the left.
Then it is necessary to make a xor operation between the byte and 00011011.
Otherwise the mere shift is enough.

Example. Consider the byte 01100111. It represents the polynomial x6 +
x5 + x2 + x + 1. When this is multiplied with x2, we must divide the task
into two parts. Multiply first with x. Thus make a shift to the left and the
result is 11001110. Then this must be multiplied still with x. First the shift
and the result is 10011100. Now one 1 has dropped out and we must make
the xor operation with 00011011. The result is 10000111 which represents the
polynomial x7 + x2 + x+ 1. This polynomial is the result of the multiplication
x2 × (x6 + x5 + x2 + x + 1) modulo f(x).

(The modulo operation is needed for two reasons. First, the result must consist
at most of 8 bits. Secondly, now the bytes form a finite field with 28 elements.
See some good text book on algebra.)

2

Make a function uint8_t mul1(uint8_t byte, int n) which multiplies (mod-
ulo f(x)) the polynomial represented by byte with xn, 0 < n < 8.

7. Make a function uint8_t mul2(uint8_t byte1, uint8_t byte2) which mul-
tiplies the polynomial byte1 with polynomial byte2 modulo f(x).

8. Consider the Mix columns operation in Rijndael or AES. A state
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3


is multiplied with a constant matrix

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


Remember the matrix multiplication:

cij =
n−1∑
k=0

aikbkj.

Thus the element s′0,0 in the resulting matrix is calculated by the formula

s′0,0 = (2 • s0,0)⊕ (3 • s1,0)⊕ s2,0 ⊕ s3,0,

where the bytes are intepreted as polynomials and ⊕ is the normal addition
and • is the multiplication modulo the previous f(x).

Make a function state* mix_columns(state* st) which multiplies the state
matrix with the above constant matrix. The result state matrix is returned.

9. Write the function

void inv_mix_columns(state* st);

that does the same as mix columns, but this time using the constant matrix
(in hexadecimal notation)

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

10. Make a function state* add_round_key(state* text, state* key) which
makes the xor operation between text and key. That is, every byte in text is
xored with the corresponding byte in key.

3

11. Now you can perform one round AES encryption. To get points for this exercise
it is good enough that encryption and decryption of the encrypted produce the
original result. You do not have to implement anything new for this. However,
you can use the following steps to perform AES yourself. Let the plaintext be
already in a state array st. The encryption consists of the following steps:

sub_bytes(st, sbox);

shift_rows(st);

st = mix_columns(st);

st = add_round_key(st, key);

The decryption proceeds as follows:

st = add_round_key(st, key);

st = inv_mix_columns(st);

inv_shift_rows(st);

sub_bytes(st, invBox);

The sub bytes in the decryption is the same as in the encryption, but this time
it uses the inverse Sbox which is given below.

Make the encryption and decryption and check if you will get the original
plaintext.

Inverse Sbox:

52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

4

